Weiqin Ao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3469349/publications.pdf

Version: 2024-02-01

		840776	940533
17	503	11	16
papers	citations	h-index	g-index
17	17	17	576
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Synergistic Compositional–Mechanical–Thermal Effects Leading to a Record High <i>zT</i> in nâ€Type V ₂ VI ₃ Alloys Through Progressive Hot Deformation. Advanced Functional Materials, 2018, 28, 1803617.	14.9	73
2	Suppression of the lattice thermal conductivity in NbFeSb-based half-Heusler thermoelectric materials through high entropy effects. Scripta Materialia, 2018, 157, 129-134.	5.2	62
3	Simultaneous Enhancement of the Thermoelectric and Mechanical Performance in One-Step Sintered n-Type Bi ₂ Te ₃ -Based Alloys via a Facile MgB ₂ Doping Strategy. ACS Applied Materials & Doping Strategy. ACS	8.0	58
4	Stacking Fault-Induced Minimized Lattice Thermal Conductivity in the High-Performance GeTe-Based Thermoelectric Materials upon Bi ₂ Te ₃ Alloying. ACS Applied Materials & amp; Interfaces, 2019, 11, 20064-20072.	8.0	57
5	Discovery of low-temperature GeTe-based thermoelectric alloys with high performance competing with Bi ₂ Te ₃ . Journal of Materials Chemistry A, 2020, 8, 1660-1667.	10.3	43
6	Band convergence and carrier-density fine-tuning as the electronic origin of high-average thermoelectric performance in Pb-doped GeTe-based alloys. Journal of Materials Chemistry A, 2020, 8, 11370-11380.	10.3	41
7	Continuously Enhanced Structural Disorder To Suppress the Lattice Thermal Conductivity of ZrNiSn-Based Half-Heusler Alloys by Multielement and Multisite Alloying with Very Low Hf Content. ACS Applied Materials & Diterfaces, 2019, 11, 13397-13404.	8.0	38
8	n-Bi _{2–<i>x</i>} Sb <i>_x</i> Te ₃ : A Promising Alternative to Mainstream Thermoelectric Material n-Bi ₂ Te _{3<i>–x</i>} Se <i>_x</i> near Room Temperature. ACS Applied Materials & Diterfaces, 2020, 12, 31619-31627.	8.0	33
9	Near-room-temperature thermoelectric materials and their application prospects in geothermal power generation. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6, 1.	2.9	24
10	(GeTe) _{1–<i>x</i>} (AgSnSe ₂) _{<i>x</i>} : Strong Atomic Disorder-Induced High Thermoelectric Performance near the Ioffe–Regel Limit. ACS Applied Materials & & amp; Interfaces, 2021, 13, 47081-47089.	8.0	22
11	Zr vacancy interfaces: an effective strategy for collaborative optimization of ZrNiSn-based thermoelectric performance. Journal of Materials Chemistry A, 2019, 7, 26053-26061.	10.3	16
12	Effects on phase transition and thermoelectric properties in the Pb-doped GeTe-Bi2Te3 alloys with thermal annealing. Journal of Alloys and Compounds, 2019, 808, 151747.	5 . 5	10
13	AgNi Alloy As a Suitable Barrier Layer Material for NbFeSb-Based Half-Heusler Thermoelectric Modules. Journal of Electronic Materials, 2019, 48, 6815-6822.	2.2	9
14	Effects of Sc, Ti, Hf, V, Nb and Ta doping on the properties of ZrNiSn alloys. Journal of Materials Science, 2019, 54, 10325-10334.	3.7	9
15	Impact of Sm alloying and thermal annealing on the structural and thermoelectric properties of (GeTe)0.85(Pb1-Sm Te)0.15 alloys. Journal of Alloys and Compounds, 2018, 755, 184-191.	5.5	7
16	Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram. International Journal of Materials Research, 2022, 113, 340-350.	0.3	1
17	Ternary compounds and isothermal section in Lu–Fe–Ga ternary system at 773 K. Phase Transitions, 2013, 86, 585-597.	1.3	O