Michiaki Sugita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3468907/publications.pdf

Version: 2024-02-01

201674 243625 2,101 67 27 44 citations h-index g-index papers 70 70 70 1831 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quantitative assessment of decadal water temperature changes in Lake Kasumigaura, a shallow turbid lake, using a one-dimensional model. Science of the Total Environment, 2022, 845, 157247.	8.0	5
2	A small non-research vessel as a platform for lake surface flux measurements. Hydrological Research Letters, 2021, 15, 16-22.	0.5	1
3	Natural and Anthropogenic Coastal Environmental Hazards: An Integrated Remote Sensing, GIS, and Geophysical-based Approach. Surveys in Geophysics, 2021, 42, 1109-1141.	4.6	14
4	Spatial variability of the surface energy balance of Lake Kasumigaura and implications for flux measurements. Hydrological Sciences Journal, 2020, 65, 401-414.	2.6	5
5	Wind as a Main Driver of Spatial Variability of Surface Energy Balance Over a Shallow 10 ² â€km ² Scale Lake: Lake Kasumigaura, Japan. Water Resources Research, 2020, 56, e2020WR027173.	4.2	13
6	Do windbreaks reduce the water consumption of a crop field? Agricultural and Forest Meteorology, 2018, 250-251, 330-342.	4.8	5
7	Crop evapotranspiration in the Nile Delta under different irrigation methods. Hydrological Sciences Journal, 2017, 62, 1618-1635.	2.6	14
8	Irrigation Methods and Water Requirements in the Nile Delta. , 2017, , 125-151.		5
9	Drag and Bulk Transfer Coefficients Over Water Surfaces in Light Winds. Boundary-Layer Meteorology, 2016, 160, 319-346.	2.3	18
10	International Collaboration and Cooperation through Researches of Hydrologic Science. Journal of Japanese Association of Hydrological Sciences, 2015, 45, 73-84.	0.2	1
11	Limiting factors for nomadic pastoralism in Mongolian steppe: A hydrologic perspective. Journal of Hydrology, 2015, 524, 455-467.	5.4	7
12	Evaporation from Lake Kasumigaura: annual totals and variability in time and space. Hydrological Research Letters, 2014, 8, 103-107.	0.5	19
13	Water Dynamics Within the Soil–Vegetation–Atmosphere System in a Steppe Region Covered by Shrubs and Herbaceous Plants. Structure and Function of Mountain Ecosystems in Japan, 2013, , 43-63.	0.5	2
14	Spectral unmixing model to assess land cover fractions in Mongolian steppe regions. Remote Sensing of Environment, 2010, 114, 2361-2372.	11.0	19
15	Seasonal and interannual variations in water vapor exchange and surface water balance over a grazed steppe in central Mongolia. Agricultural Water Management, 2010, 97, 857-864.	5.6	15
16	Effects of exclosure on aboveground biomass, vegetation constitution, and midday gross primary productivity in semi-arid Mongolian steppe. J Agricultural Meteorology, 2010, 66, 227-236.	1.5	2
17	Recent Low-Flow and Groundwater Storage Changes in Upland Watersheds of the Kanto Region, Japan. Journal of Hydrologic Engineering - ASCE, 2009, 14, 280-285.	1.9	14
18	Concise formulae for the atmospheric correction of hemispherical thermal radiation measured near the ground surface. Water Resources Research, 2009, 45, .	4.2	1

#	Article	IF	CITATIONS
19	How universal is the $\langle i \rangle C \langle j \rangle$ function in the bulk atmospheric boundary layer similarity approach for estimating surface sensible heat flux?. Water Resources Research, 2009, 45, .	4.2	O
20	Response of gross ecosystem productivity, light use efficiency, and water use efficiency of Mongolian steppe to seasonal variations in soil moisture. Journal of Geophysical Research, 2008, 113, .	3.3	31
21	Is Mongolia's groundwater increasing or decreasing? The case of the Kherlen River basin / Les eaux souterraines de Mongolie s'accroissent ou décroissent-elles? Cas du bassin versant la Rivière Kherlen. Hydrological Sciences Journal, 2008, 53, 1221-1229.	2.6	41
22	Variance methods to estimate regional heat fluxes with aircraft measurements in the convective boundary layer. Journal of Hydrology, 2007, 333, 68-85.	5.4	6
23	An overview of the rangelands atmosphere–hydrosphere–biosphere interaction study experiment in northeastern Asia (RAISE). Journal of Hydrology, 2007, 333, 3-20.	5.4	54
24	Water sources in semiarid northeast Asia as revealed by field observations and isotope transport model. Journal of Geophysical Research, 2007, 112, .	3.3	54
25	Temporal variation of $\hat{\Gamma}$ 13C of larch leaves from a montane boreal forest in Mongolia. Trees - Structure and Function, 2007, 21, 479-490.	1.9	35
26	Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia. Agricultural and Forest Meteorology, 2006, 137, 89-106.	4.8	113
27	Change of evapotranspiration components due to the succession from Japanese red pine to evergreen oak. Journal of Hydrology, 2006, 326, 166-180.	5.4	29
28	Seasonal variation in oxygen isotope composition of waters for a montane larch forest in Mongolia. Trees - Structure and Function, 2006, 20, 122-130.	1.9	37
29	Natural recovery of steppe vegetation on vehicle tracks in central Mongolia. Journal of Biosciences, 2006, 31, 85-93.	1.1	19
30	Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Global Change Biology, 2005, 11, 051013014052004-???.	9.5	76
31	Change of interception process due to the succession from Japanese red pine to evergreen oak. Journal of Hydrology, 2005, 315, 154-166.	5.4	73
32	Seasonal variation of surface fluxes and scalar roughness of suburban land covers. Agricultural and Forest Meteorology, 2005, 135, 1-21.	4.8	18
33	Year-round measurements of net ecosystem CO2flux over a montane larch forest in Mongolia. Journal of Geophysical Research, 2005, 110, .	3.3	44
34	Surface and Mixed-Layer Variance Methods to Estimate Regional Sensible Heat Flux at the Surface. Boundary-Layer Meteorology, 2003, 106, 117-145.	2.3	10
35	Single level turbulence measurements to determine roughness parameters of complex terrain. Journal of Geophysical Research, 2003, 108, .	3.3	31
36	Complementary relationship with a convective boundary layer model to estimate regional evaporation. Water Resources Research, 2001, 37, 353-365.	4.2	39

#	Article	IF	Citations
37	Wind speed measurements in upper and lower boundary layer to determine regional momentum fluxes. Agricultural and Forest Meteorology, 1999, 98-99, 145-158.	4.8	8
38	Regional surface momentum flux derived from atmospheric boundary layer bulk similarity approach. Journal of Geophysical Research, 1999, 104, 16965-16972.	3.3	5
39	Regional sensible heat flux and thermal roughness length of an inhomogeneous landscape. Hydrological Processes, 1998, 12, 2115-2131.	2.6	3
40	Evaluation of Surface Fluxes Over a Paddy Field in Tropical Environment: Some findings from a preliminary observation of GAME Suimon Mizu Shigen Gakkaishi, 1998, 11, 39-60.	0.1	12
41	How regional are the regional fluxes obtained from lower atmospheric boundary layer data?. Water Resources Research, 1997, 33, 1437-1445.	4.2	16
42	Optimal Measurement Strategy for Surface Temperature to Determine Sensible Heat Flux From Anisothermal Vegetation. Water Resources Research, 1996, 32, 2129-2134.	4.2	42
43	Determination of canopy emissivity: how reliable is it?. Agricultural and Forest Meteorology, 1996, 81, 229-239.	4.8	10
44	Regional Roughness Parameters and Momentum Fluxes over a Complex Area. Journal of Applied Meteorology and Climatology, 1996, 35, 2179-2190.	1.7	28
45	Sensible Heat Transfer Parameterization for Surfaces with Anisothermal Dense Vegetation. Journals of the Atmospheric Sciences, 1996, 53, 209-216.	1.7	79
46	Flux determination over a smooth surface under strongly unstable conditions. Boundary-Layer Meteorology, 1995, 73, 145-158.	2.3	14
47	Variability of surface fluxes within a complex area observed during TABLE 92. Agricultural and Forest Meteorology, 1995, 73, 189-207.	4.8	18
48	Satellite-derived surface temperatures with boundary layer temperatures and geostrophic winds to estimate surface energy fluxes. Journal of Geophysical Research, 1995, 100, 25447.	3.3	15
49	Radiometrically determined skin temperature and scalar roughness to estimate surface heat flux part II: Performance of parameterized scalar roughness for the determination of sensible heat. Boundary-Layer Meteorology, 1994, 70, 1-12.	2.3	19
50	Radiometrically determined skin temperature and scalar roughness to estimate surface heat flux. Part I: Parameterization of radiometric scalar roughness. Boundary-Layer Meteorology, 1994, 69, 397-416.	2.3	49
51	Cloud effect in the estimation of instantaneous downward longwave radiation. Water Resources Research, 1993, 29, 599-605.	4.2	83
52	Comparison of land surface temperatures derived from satellite observations with ground truth during FIFE. International Journal of Remote Sensing, 1993, 14, 1659-1676.	2.9	45
53	Application of selfâ€preservation in the diurnal evolution of the surface energy budget to determine daily evaporation. Journal of Geophysical Research, 1992, 97, 18377-18382.	3.3	219
54	Regional surface fluxes under nonuniform soil moisture conditions during drying. Water Resources Research, 1992, 28, 1669-1674.	4.2	27

#	Article	IF	Citations
55	Landsat surface temperatures and radio soundings to obtain regional surface fluxes. Water Resources Research, 1992, 28, 1675-1679.	4.2	20
56	Regional surface fluxes from satellite-derived surface temperatures (AVHRR) and radiosonde profiles. Boundary-Layer Meteorology, 1992, 58, 355-366.	2.3	55
57	The stability functions in the bulk similarity formulation for the unstable boundary layer. Boundary-Layer Meteorology, 1992, 61, 65-80.	2.3	32
58	Daily evaporation over a region from lower boundary layer profiles measured with radiosondes. Water Resources Research, 1991, 27, 747-752.	4.2	148
59	A bulk similarity approach in the atmospheric boundary layer using radiometric skin temperature to determine regional surface fluxes. Boundary-Layer Meteorology, 1991, 55, 1-23.	2.3	34
60	How Similar are Temperature and Humidity Profiles in the Unstable Boundary Layer?. Journal of Applied Meteorology and Climatology, 1990, 29, 489-497.	1.7	10
61	The extent of the unstable Monin-Obukhov layer for temperature and humidity above complex hilly grassland. Boundary-Layer Meteorology, 1990, 51, 383-400.	2.3	47
62	Inner Region Humidity Characteristics of the Neutral Boundary Layer Over Prairie Terrain. Water Resources Research, 1990, 26, 2931-2936.	4.2	17
63	Regional Surface Fluxes From Remotely Sensed Skin Temperature and Lower Boundary Layer Measurements. Water Resources Research, 1990, 26, 2937-2944.	4.2	104
64	Wind velocity measurements in the neutral boundary layer above hilly prairie. Journal of Geophysical Research, 1990, 95, 7617-7624.	3.3	60
65	Factors Affecting Evapotranspiration of a Forest. Geographical Review of Japan, 1985, 58, 74-82.	0.2	3
66	Energy and Water Balance of a Pine Forest during a Bai-u and a Summer Season. J Agricultural Meteorology, 1984, 40, 263-267.	1.5	6
67	CHANGES IN RIVER WATER TEMPERATURE WITH RAINFALL. Chirigaku Hyoron, 1983, 56, 835-843.	0.0	1