List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/346812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manipulation of the miR-378a/mt-ATP6 regulatory axis rescues ATP synthase in the diabetic heart and offers a novel role for lncRNA Kcnq1ot1. American Journal of Physiology - Cell Physiology, 2022, 322, C482-C495.	2.1	10
2	Machine Learning to Identify Regional and Segmental Dysfunction during Type 2 Diabetes Mellitus Progression. FASEB Journal, 2022, 36, .	0.2	0
3	LncRNAs imported into mitochondria possess distinct features stratified by machine learning that promote interaction with the mitochondrial import protein PNPase. FASEB Journal, 2022, 36, .	0.2	0
4	Identifying Unique Patterns of Myocardial Deformation through Segmental Speckle Tracking Stress Strain Following Highâ€Fat Diet. FASEB Journal, 2021, 35, .	0.2	0
5	Enhanced antioxidant capacity prevents epitranscriptomic and cardiac alterations in adult offspring gestationally-exposed to ENM. Nanotoxicology, 2021, 15, 812-831.	1.6	8
6	The Mitochondrial mitoNEET Ligand NL-1 Is Protective in a Murine Model of Transient Cerebral Ischemic Stroke. Pharmaceutical Research, 2021, 38, 803-817.	1.7	9
7	Mild traumatic brain injury increases vulnerability to cerebral ischemia in mice. Experimental Neurology, 2021, 342, 113765.	2.0	9
8	Mitochondrial membranes modify mutant huntingtin aggregation. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183663.	1.4	9
9	Loss of the redox mitochondrial protein mitoNEET leads to mitochondrial dysfunction in B-cell acute lymphoblastic leukemia. Free Radical Biology and Medicine, 2021, 175, 226-235.	1.3	10
10	Transcriptomics of single dose and repeated carbon black and ozone inhalation co-exposure highlight progressive pulmonary mitochondrial dysfunction. Particle and Fibre Toxicology, 2021, 18, 44.	2.8	8
11	Cardiovascular adaptations to particle inhalation exposure: molecular mechanisms of the toxicology. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H282-H305.	1.5	17
12	MiR-34a Interacts with Cytochrome c and Shapes Stroke Outcomes. Scientific Reports, 2020, 10, 3233.	1.6	17
13	Endoplasmic reticulum stress-induced complex I defect: Central role of calcium overload. Archives of Biochemistry and Biophysics, 2020, 683, 108299.	1.4	37
14	Pyrvinium Pamoate Use in a B cell Acute Lymphoblastic Leukemia Model of the Bone Tumor Microenvironment. Pharmaceutical Research, 2020, 37, 43.	1.7	11
15	Crystal structure of the mitochondrial protein mitoNEET bound to a benze-sulfonide ligand. Communications Chemistry, 2019, 2, .	2.0	21
16	miRNA-378a as a key regulator of cardiovascular health following engineered nanomaterial inhalation exposure. Nanotoxicology, 2019, 13, 644-663.	1.6	21
17	ROS promote epigenetic remodeling and cardiac dysfunction in offspring following maternal engineered nanomaterial (ENM) exposure. Particle and Fibre Toxicology, 2019, 16, 24.	2.8	36
18	Machine-learning to stratify diabetic patients using novel cardiac biomarkers and integrative genomics. Cardiovascular Diabetology, 2019, 18, 78.	2.7	55

#	Article	IF	CITATIONS
19	The role of SIRT1 in skeletal muscle function and repair of older mice. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 929-949.	2.9	58
20	Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E268-E285.	1.8	222
21	Using Machine Learning to Predict the Development of Diabetes and Potential Biomarkers Linked to Cardiac Risk. FASEB Journal, 2019, 33, 515.16.	0.2	0
22	Activation of Mitochondrial Calpains Contributes to the Selective Degradation of Specific Mitochondrial Proteins. FASEB Journal, 2019, 33, 802.15.	0.2	0
23	microRNA Changes in Diabetic Cardiac Mitochondria: What are they doing there?. FASEB Journal, 2019, 33, 713.3.	0.2	0
24	Elevated ROS and Epigenetic Remodeling Disrupt Cardiac Function in Offspring Following Maternal Engineered Nanomaterial (ENM) Exposure. FASEB Journal, 2019, 33, 802.76.	0.2	0
25	Reactive oxygen species damage drives cardiac and mitochondrial dysfunction following acute nano-titanium dioxide inhalation exposure. Nanotoxicology, 2018, 12, 32-48.	1.6	41
26	Regulating microRNA expression: at the heart of diabetes mellitus and the mitochondrion. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H293-H310.	1.5	48
27	Intermediary metabolism and fatty acid oxidation: novel targets of electron transport chain-driven injury during ischemia and reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H787-H795.	1.5	26
28	Mitochondrial proteome disruption in the diabetic heart through targeted epigenetic regulation at the mitochondrial heat shock protein 70 (mtHsp70) nuclear locus. Journal of Molecular and Cellular Cardiology, 2018, 119, 104-115.	0.9	20
29	Activation of Mitochondrial Calpain 1 Leads to Degradation of PDH. FASEB Journal, 2018, 32, 543.7.	0.2	1
30	Role of microRNA in metabolic shift during heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H33-H45.	1.5	52
31	Maternal-engineered nanomaterial exposure disrupts progeny cardiac function and bioenergetics. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H446-H458.	1.5	47
32	Excess coenzyme A reduces skeletal muscle performance and strength in mice overexpressing human PANK2. Molecular Genetics and Metabolism, 2017, 120, 350-362.	0.5	12
33	Mitochondrial miRNAs in diabetes: just the tip of the iceberg. Canadian Journal of Physiology and Pharmacology, 2017, 95, 1156-1162.	0.7	32
34	Exploring the mitochondrial microRNA import pathway through Polynucleotide Phosphorylase (PNPase). Journal of Molecular and Cellular Cardiology, 2017, 110, 15-25.	0.9	60
35	Early detection of cardiac dysfunction in the type 1 diabetic heart using speckle-tracking based strain imaging. Journal of Molecular and Cellular Cardiology, 2016, 90, 74-83.	0.9	33
36	Cardiac and mitochondrial dysfunction following acute pulmonary exposure to mountaintop removal mining particulate matter. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H2017-H2030.	1.5	36

#	Article	IF	CITATIONS
37	Microvascular and mitochondrial dysfunction in the female F1 generation after gestational TiO ₂ nanoparticle exposure. Nanotoxicology, 2015, 9, 941-951.	1.6	53
38	Translational Regulation of the Mitochondrial Genome Following Redistribution of Mitochondrial MicroRNA in the Diabetic Heart. Circulation: Cardiovascular Genetics, 2015, 8, 785-802.	5.1	90
39	Transgenic overexpression of mitofilin attenuates diabetes mellitus-associated cardiac and mitochondria dysfunction. Journal of Molecular and Cellular Cardiology, 2015, 79, 212-223.	0.9	54
40	Functional deficiencies of subsarcolemmal mitochondria in the type 2 diabetic human heart. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H54-H65.	1.5	62
41	Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1-H14.	1.5	125
42	Aging alters contractile properties and fiber morphology in pigeon skeletal muscle. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 1031-1039.	0.7	10
43	Diabetes mellitus reduces the function and expression of ATP-dependent K+ channels in cardiac mitochondria. Life Sciences, 2013, 92, 664-668.	2.0	23
44	Evaluation of the cardiolipin biosynthetic pathway and its interactions in the diabetic heart. Life Sciences, 2013, 93, 313-322.	2.0	26
45	Reversal of mitochondrial proteomic loss in Type 1 diabetic heart with overexpression of phospholipid hydroperoxide glutathione peroxidase. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R553-R565.	0.9	63
46	Translational regulation of the mitochondrial genome following redistribution of mitochondrial microRNA (MitomiR) in the diabetic heart FASEB Journal, 2013, 27, 701.10.	0.2	0
47	Interaction of mitofilin with respiratory complexes in mitochondrial subpopulations. FASEB Journal, 2013, 27, 1126.6.	0.2	Ο
48	Heat Shock Protein 27 (hsp27) Translocation to the Mitochondria is Associated with Protection Against Diabetic Cardiomyopathy FASEB Journal, 2013, 27, 1209.3.	0.2	0
49	Impact of mitochondria phospholipid hydroperoxide glutathione peroxidase (mPHGPx) overexpression on the type 1 diabetic heart. FASEB Journal, 2013, 27, 1209.2.	0.2	Ο
50	miR-141 as a regulator of the mitochondrial phosphate carrier (Slc25a3) in the type 1 diabetic heart. American Journal of Physiology - Cell Physiology, 2012, 303, C1244-C1251.	2.1	100
51	Examination of cardiolipin biosynthesis in the diabetic heart. FASEB Journal, 2012, 26, lb746.	0.2	Ο
52	HDAC6 regulates mitochondrial oxidative phosphorylation by ATP synthase beta subunit acetylation in diabetic cardiomyopathy. FASEB Journal, 2012, 26, 869.13.	0.2	0
53	Mountainâ€ŧop mining particulate matter exposure increases markers of mitochondriallyâ€driven apoptosis in rat cardiac tissue. FASEB Journal, 2012, 26, 1036.15.	0.2	1
54	miRNAâ€141 is a potential regulator of the mitochondrial phosphate carrier (slc25a3) in the type 1 diabetic heart. FASEB Journal, 2012, 26, 869.11.	0.2	0

#	Article	IF	CITATIONS
55	Overexpression of phospholipid hydroperoxide glutathione peroxidase (MPHGPx) attenuates cardiac mitochondrial proteomic loss and reverses protein import detriments observed with type 1 diabetes mellitus. FASEB Journal, 2012, 26, 1127.4.	0.2	0
56	Differential expression of mitoK ATP subunits in cardiac mitochondrial subpopulations and the influence of Type I diabetes. FASEB Journal, 2012, 26, .	0.2	0
57	Longitudinal assessment of type I diabetes mellitus using conventional echocardiography and speckleâ€tracking based strain imaging. FASEB Journal, 2012, 26, 1054.11.	0.2	0
58	Glutathione Dependent and Independent Salutary Effects of NAC on HIV Tat Proteinopathy. FASEB Journal, 2012, 26, 1117.2.	0.2	0
59	Type 1 diabetes mellitus differentially regulates mitochondriallyâ€encoded proteins in cardiac mitochondrial subpopulations. FASEB Journal, 2012, 26, lb748.	0.2	0
60	Proteomic Remodeling of Mitochondria in Heart Failure. Congestive Heart Failure, 2011, 17, 262-268.	2.0	23
61	Proteomic alterations of distinct mitochondrial subpopulations in the type 1 diabetic heart: contribution of protein import dysfunction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R186-R200.	0.9	107
62	Mitochondrial phospholipid hydroperoxide glutathione peroxidase (mPHGPx) overexpression preserves the inner mitochondrial membrane in the diabetic heart. FASEB Journal, 2011, 25, 1095.5.	0.2	0
63	Examination of microRNA (miRNA) dysregulation in the type 1 diabetic heart and its functional implications. FASEB Journal, 2011, 25, lb464.	0.2	0
64	Enhanced apoptotic propensity in diabetic cardiac mitochondria: influence of subcellular spatial location. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H633-H642.	1.5	81
65	Mitochondrial dysfunction in the type 2 diabetic heart is associated with alterations in spatially distinct mitochondrial proteomes. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H529-H540.	1.5	136
66	Mitochondriaâ€specific overexpression of phospholipid hydroperoxide glutathione peroxidase (GPx4) attenuates ischemia/reperfusion (I/R) associated apoptosis. FASEB Journal, 2010, 24, lb560.	0.2	0
67	Mitochondrial subpopulationâ€specific proteomic alterations in the type 2 diabetic heart. FASEB Journal, 2010, 24, lb573.	0.2	0
68	Mitochondrial Overexpression of Phospholipid Hydroperoxide Glutathione Peroxidase 4 (mPHGPx) Provides Cardioprotection From Type 1 Diabetes Mellitus Insult. FASEB Journal, 2010, 24, 789.2.	0.2	0
69	Characterization of regression of exerciseâ€induced cardiac hypertrophy. FASEB Journal, 2010, 24, lb593.	0.2	0
70	Diabetic cardiomyopathy-associated dysfunction in spatially distinct mitochondrial subpopulations. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H359-H369.	1.5	122
71	Integration of dilator and constrictor pathways for arteriolar reactivity in the metabolic syndrome. FASEB Journal, 2009, 23, 948.10.	0.2	0
72	Hyperglycemiaâ€induced mitochondrial dysfunction and oxidant generation in mouse renal microvascular endothelial cells is reversed by Câ€peptide. FASEB Journal, 2009, 23, 594.15.	0.2	0

JOHN M HOLLANDER

#	Article	IF	CITATIONS
73	Carbon monoxide provides antioxidant protection in hepatic sinusoids during a remote inflammatory stress by reducing carbonylated MnSOD. FASEB Journal, 2009, 23, 982.3.	0.2	0
74	Vascular thromboxane generation restrains arteriolar hypoxic dilation in skeletal muscle of obese zucker rats. FASEB Journal, 2009, 23, 767.9.	0.2	0
75	Câ€peptide confers protection in renal cortical endothelial cells during Type I diabetes by preventing the phosphorylation of glucoseâ€6â€phosphate dehydrogenase. FASEB Journal, 2009, 23, 971.12.	0.2	0
76	Mitochondria-specific transgenic overexpression of phospholipid hydroperoxide glutathione peroxidase (GPx4) attenuates ischemia/reperfusion-associated cardiac dysfunction. Free Radical Biology and Medicine, 2008, 45, 855-865.	1.3	129
77	Mitochondria protection from hypoxia/reoxygenation injury with mitochondria heat shock protein 70 overexpression. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H249-H256.	1.5	71
78	Quantitative proteomic analysis of distinct mitochondrial subpopulations in diabetic myocardium. FASEB Journal, 2008, 22, 1226.36.	0.2	1
79	Enhanced apoptotic propensity in diabetic cardiac interfibrillar mitochondria. FASEB Journal, 2008, 22, 1238.19.	0.2	1
80	Contractile dysfunction in the diabetic heart is associated with enhanced apoptosis and decreased Hsp25 phosphorylation. FASEB Journal, 2007, 21, A1343.	0.2	2
81	Overexpression of Wild-Type Heat Shock Protein 27 and a Nonphosphorylatable Heat Shock Protein 27 Mutant Protects Against Ischemia/Reperfusion Injury in a Transgenic Mouse Model. Circulation, 2004, 110, 3544-3552.	1.6	147
82	Overexpression of PHGPx and HSP60/10 protects against ischemia/reoxygenation injury. Free Radical Biology and Medicine, 2003, 35, 742-751.	1.3	70
83	Exercise Down-Regulates Hepatic Fatty Acid Synthase in Streptozotocin-Treated Rats. Journal of Nutrition, 2001, 131, 2252-2259.	1.3	11
84	Oxidative Stress and Aging: Role of Exercise and Its Influences on Antioxidant Systems. Annals of the New York Academy of Sciences, 1998, 854, 102-117.	1.8	141