
Maria M M Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3467974/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in the synthesis of biologically active spirooxindoles. Tetrahedron, 2014, 70, 9735-9757.	1.9	334
2	Michael Acceptors as Cysteine Protease Inhibitors. Mini-Reviews in Medicinal Chemistry, 2007, 7, 1040-1050.	2.4	130
3	Reaction of naphthoquinones with substituted nitromethanes. Facile synthesis and antifungal activity of naphtho[2,3-d]isoxazole-4,9-diones. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 193-195.	2.2	94
4	Synthesis of novel spiropyrazoline oxindoles and evaluation of cytotoxicity in cancer cell lines. European Journal of Medicinal Chemistry, 2014, 79, 266-272.	5.5	84
5	Enhancing Macrocyclic Diterpenes as Multidrug-Resistance Reversers: Structure–Activity Studies on Jolkinol D Derivatives. Journal of Medicinal Chemistry, 2013, 56, 748-760.	6.4	61
6	Straightforward Methodology for the Enantioselective Synthesis of Benzo[a]- and Indolo[2,3-a]quinolizidines. Journal of Organic Chemistry, 2007, 72, 5193-5201.	3.2	58
7	Synthesis and evaluation of spiroisoxazoline oxindoles as anticancer agents. Bioorganic and Medicinal Chemistry, 2014, 22, 577-584.	3.0	56
8	Enantioselective Formal Synthesis of (+)-Dihydrocorynantheine and (â^')-Dihydrocorynantheol. Journal of Organic Chemistry, 2009, 74, 1205-1211.	3.2	43
9	Oxazoloisoindolinones with in vitro antitumor activity selectively activate a p53-pathway through potential inhibition of the p53–MDM2 interaction. European Journal of Pharmaceutical Sciences, 2015, 66, 138-147.	4.0	41
10	Biogenetically Inspired Enantioselective Approach to Indolo[2,3-a]- and Benzo[a]quinolizidine Alkaloids from a Synthetic Equivalent of Secologanin. Organic Letters, 2005, 7, 2817-2820.	4.6	39
11	An Update on MDMX and Dual MDM2/X Inhibitors. Current Topics in Medicinal Chemistry, 2018, 18, 647-660.	2.1	39
12	Enantioselective formal synthesis of ent-rhynchophylline and ent-isorhynchophylline. Chemical Communications, 2013, 49, 1954.	4.1	37
13	A tryptophanol-derived oxazolopiperidone lactam is cytotoxic against tumors via inhibition of p53 interaction with murine double minute proteins. Pharmacological Research, 2015, 95-96, 42-52.	7.1	37
14	Reactivation of wild-type and mutant p53 by tryptophanolderived oxazoloisoindolinone SLMP53-1, a novel anticancer small-molecule. Oncotarget, 2016, 7, 4326-4343.	1.8	37
15	Cell Death Targets and Potential Modulators in Alzheimers Disease. Current Pharmaceutical Design, 2010, 16, 2851-2864.	1.9	36
16	Enantioselective Spirocyclizations from Tryptophanol-Derived Oxazolopiperidone Lactams. Organic Letters, 2007, 9, 2907-2910.	4.6	35
17	Synthesis and evaluation of vinyl sulfones as caspase-3 inhibitors. AÂstructure–activity study. European Journal of Medicinal Chemistry, 2010, 45, 3858-3863.	5.5	34
18	Squaric acid: a valuable scaffold for developing antimalarials?. MedChemComm, 2012, 3, 489.	3.4	34

MARIA M M SANTOS

#	Article	IF	CITATIONS
19	Design, synthesis and evaluation of 3-methylene-substituted indolinones as antimalarials. European Journal of Medicinal Chemistry, 2011, 46, 927-933.	5.5	33
20	DIMP53-1: a novel small-molecule dual inhibitor of p53-MDM2/X interactions with multifunctional p53-dependent anticancer properties. Molecular Oncology, 2017, 11, 612-627.	4.6	33
21	Efficient synthesis of spiroisoxazoline oxindoles. Tetrahedron Letters, 2012, 53, 281-284.	1.4	31
22	Enantiopure Indolizinoindolones with in vitro Activity against Blood―and Liverâ€6tage Malaria Parasites. ChemMedChem, 2015, 10, 2080-2089.	3.2	30
23	InÂvitro targeting of colon cancer cells using spiropyrazoline oxindoles. European Journal of Medicinal Chemistry, 2017, 139, 168-179.	5.5	29
24	Chemical Variations on the p53 Reactivation Theme. Pharmaceuticals, 2016, 9, 25.	3.8	28
25	Spirotriazoline oxindoles: A novel chemical scaffold with inÂvitro anticancer properties. European Journal of Medicinal Chemistry, 2017, 140, 494-509.	5.5	27
26	A short synthesis of staurosporinone (K-252c). Tetrahedron Letters, 2003, 44, 2577-2578.	1.4	25
27	Aspartic vinyl sulfones: Inhibitors of a caspase-3-dependent pathway. European Journal of Medicinal Chemistry, 2011, 46, 2141-2146.	5.5	25
28	Complementary routes for the stereoselective synthesis of functionalized benzoquinolizidine targets. Tetrahedron Letters, 2006, 47, 5713-5716.	1.4	24
29	Aza vinyl sulfones: Synthesis and evaluation as antiplasmodial agents. Bioorganic and Medicinal Chemistry, 2011, 19, 7635-7642.	3.0	24
30	Spirooxadiazoline oxindoles with promising <i>in vitro</i> antitumor activities. MedChemComm, 2016, 7, 420-425.	3.4	24
31	A novel synthesis of arcyriaflavin-A via an intramolecular sulfur extrusion reaction. Tetrahedron Letters, 2000, 41, 9835-9838.	1.4	21
32	Squaric acid/4-aminoquinoline conjugates: Novel potent antiplasmodial agents. European Journal of Medicinal Chemistry, 2013, 69, 365-372.	5.5	21
33	Synthetic Condensed 1,4-naphthoquinone Derivative Shifts Neural Stem Cell Differentiation by Regulating Redox State. Molecular Neurobiology, 2013, 47, 313-324.	4.0	21
34	Improving anticancer activity towards colon cancer cells with a new p53â€activating agent. British Journal of Pharmacology, 2018, 175, 3947-3962.	5.4	21
35	SLMP53-2 Restores Wild-Type-Like Function to Mutant p53 through Hsp70: Promising Activity in Hepatocellular Carcinoma. Cancers, 2019, 11, 1151.	3.7	21
36	A new approach to N-protected staurosporinones. Tetrahedron Letters, 2004, 45, 2347-2349.	1.4	17

MARIA M M SANTOS

#	Article	IF	CITATIONS
37	Novel squaramides with in vitro liver stage antiplasmodial activity. Bioorganic and Medicinal Chemistry, 2016, 24, 1786-1792.	3.0	17
38	SLMP53-1 Inhibits Tumor Cell Growth through Regulation of Glucose Metabolism and Angiogenesis in a P53-Dependent Manner. International Journal of Molecular Sciences, 2020, 21, 596.	4.1	17
39	Recent Progress in the Development of Indole-Based Compounds Active against Malaria, Trypanosomiasis and Leishmaniasis. Molecules, 2022, 27, 319.	3.8	17
40	Stereocontrolled Generation of Benzo[<i>a</i>]―and Indolo[2,3â€ <i>a</i>]quinolizidines from (<i>S</i>)â€Tryptophanol and (<i>Sof Organic Chemistry, 2011, 2011, 3858-3863.</i>	2.4	14
41	Synthesis of 3-acetonyl- and 3-(2-oxoethyl)glutarates. Tetrahedron, 2005, 61, 7693-7702.	1.9	13
42	Synthesis of phenylalaninol-derived oxazolopyrrolidone lactams and evaluation as NMDA receptor antagonists. Monatshefte Für Chemie, 2013, 144, 473-477.	1.8	13
43	SLMP53-1 interacts with wild-type and mutant p53 DNA-binding domain and reactivates multiple hotspot mutations. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129440.	2.4	13
44	Small Molecules Targeting Mutant P53: A Promising Approach for Cancer Treatment. Current Medicinal Chemistry, 2020, 26, 7323-7336.	2.4	13
45	Exploiting the antiproliferative potential of spiropyrazoline oxindoles in a human ovarian cancer cell line. Bioorganic and Medicinal Chemistry, 2021, 30, 115880.	3.0	12
46	Indolo[2,3-a]quinolizidines and Derivatives: Bioactivity and Asymmetric Synthesis. Current Pharmaceutical Design, 2015, 21, 5518-5546.	1.9	12
47	Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers, 2021, 13, 1648.	3.7	11
48	Naphtho[2,3-d]isoxazole-4,9-dione-3-carboxylates: Potent, non-cytotoxic, antiapoptotic agents. Chemico-Biological Interactions, 2009, 180, 175-182.	4.0	10
49	A Novel Small Molecule p53 Stabilizer for Brain Cell Differentiation. Frontiers in Chemistry, 2019, 7, 15.	3.6	10
50	Tryptophanol-derived oxazolopiperidone lactams: Identification of a hit compound as NMDA receptor antagonist. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3333-3336.	2.2	9
51	Discovery of spirooxadiazoline oxindoles with dual-stage antimalarial activity. European Journal of Medicinal Chemistry, 2022, 236, 114324.	5.5	9
52	Potency and Selectivity Optimization of Tryptophanolâ€Derived Oxazoloisoindolinones: Novel p53 Activators in Human Colorectal Cancer. ChemMedChem, 2021, 16, 250-258.	3.2	6
53	Optimization of Bicyclic Lactam Derivatives as NMDA Receptor Antagonists. ChemMedChem, 2017, 12, 537-545.	3.2	5
54	Enantiopure Indolo[2,3-a]quinolizidines: Synthesis and Evaluation as NMDA Receptor Antagonists. Molecules, 2016, 21, 1027.	3.8	4

MARIA M M SANTOS

#	Article	IF	CITATIONS
π			CHAHONS
55	Tryptophanol-Derived Oxazolopyrrolidone Lactams as Potential Anticancer Agents against Gastric Adenocarcinoma. Pharmaceuticals, 2021, 14, 208.	3.8	3
56	Mutant p53 reactivator SLMP53-2 hinders ultraviolet B radiation-induced skin carcinogenesis. Pharmacological Research, 2022, 175, 106026.	7.1	3
57	1.2 Designing Covalent Inhibitors: A Medicinal Chemistry Challenge. , 2015, , 44-60.		2
58	Identification of tetracyclic lactams as NMDA receptor antagonists with potential application in neurological disorders. European Journal of Medicinal Chemistry, 2020, 194, 112242.	5.5	2
59	PPIs as therapeutic targets for anticancer drug discovery: the case study of MDM2 and BET bromodomain inhibitors. , 2020, , 267-288.		1
60	Pharmacological Treatment of Malaria. Topics in Medicinal Chemistry, 2021, , 219-240.	0.8	1
61	A More Sustainable Process for Preparation of the Muscarinic Acetylcholine Antagonist Umeclidinium Bromide. ChemMedChem, 2018, 13, 2053-2056.	3.2	0