
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3467228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRPM2 plays a minor role in acute kidney injury and kidney fibrosis. Kidney360, 2022, 3, 10.34067/KID.0005492021.	2.1	6
2	An evaluation of roxadustat for the treatment of anemia associated with chronic kidney disease. Expert Opinion on Pharmacotherapy, 2022, 23, 19-28.	1.8	7
3	Exploring molecular targets in diabetic kidney disease. Kidney Research and Clinical Practice, 2022, 41, S33-S45.	2.2	13
4	Treatment of Diabetic Kidney Disease: Current and Future. Diabetes and Metabolism Journal, 2021, 45, 11-26.	4.7	98
5	Profile of Daprodustat in the Treatment of Renal Anemia Due to Chronic Kidney Disease. Therapeutics and Clinical Risk Management, 2021, Volume 17, 155-163.	2.0	9
6	Update on diagnosis, pathophysiology, and management of diabetic kidney disease. Nephrology, 2021, 26, 491-500.	1.6	63
7	Metabolic Changes and Oxidative Stress in Diabetic Kidney Disease. Antioxidants, 2021, 10, 1143.	5.1	27
8	Adaptive Response as a Potential Key Link Between SGLT2 Inhibition and Renoprotection. Kidney International Reports, 2021, 6, 2022-2024.	0.8	2
9	A novel method for successful induction of interdigitating process formation in conditionally immortalized podocytes from mice, rats, and humans. Biochemical and Biophysical Research Communications, 2021, 570, 47-52.	2.1	2
10	A distinctive distribution of hypoxiaâ€inducible factorâ€1α in cultured renal tubular cells with hypoperfusion simulated by coverslip placement. Physiological Reports, 2021, 9, e14689.	1.7	1
11	JTZ-951, an HIF prolyl hydroxylase inhibitor, suppresses renal interstitial fibroblast transformation and expression of fibrosis-related factors. American Journal of Physiology - Renal Physiology, 2020, 318, F14-F24.	2.7	17
12	The oral hypoxia-inducible factor prolyl hydroxylase inhibitor enarodustat counteracts alterations in renal energy metabolism inÂtheÂearlyÂstages of diabetic kidney disease. Kidney International, 2020, 97, 934-950.	5.2	73
13	Effects of a prolyl hydroxylase inhibitor on kidney and cardiovascular complications in a rat model of chronic kidney disease. American Journal of Physiology - Renal Physiology, 2020, 318, F388-F401.	2.7	34
14	Nuclear factor erythroid 2-related factor 2 as a treatment target of kidney diseases. Current Opinion in Nephrology and Hypertension, 2020, 29, 128-135.	2.0	33
15	Prolyl hydroxylase inhibition protects the kidneys from ischemia via upregulation of glycogen storage. Kidney International, 2020, 97, 687-701.	5.2	50
16	Hypoxia-Inducible Factor and Oxygen Biology in the Kidney. Kidney360, 2020, 1, 1021-1031.	2.1	20
17	Prolyl Hydroxylase Domain Inhibitor Protects against Metabolic Disorders and Associated Kidney Disease in Obese Type 2 Diabetic Mice. Journal of the American Society of Nephrology: JASN, 2020, 31, 560-577.	6.1	72
18	Hypoxia-inducible factor prolyl hydroxylase inhibitor in the treatment of anemia in chronic kidney disease. Current Opinion in Nephrology and Hypertension, 2020, 29, 414-422	2.0	19

#	Article	IF	CITATIONS
19	SO049HYPOXIA INDUCIBLE FACTOR-PROLYL HYDROXYLASE (HIF-PH) INHIBITION COUNTERACTS THE RENAL ENERGY METABOLISM ALTERATIONS IN THE EARLY STAGES OF DIABETIC KIDNEY DISEASE. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
20	The role of hypoxia in the pathogenesis of lupus nephritis. Kidney International, 2020, 98, 821-823.	5.2	2
21	Conditions, pathogenesis, and progression of diabetic kidney disease and early decliner in Japan. BMJ Open Diabetes Research and Care, 2020, 8, e000902.	2.8	31
22	JTZ-951 (enarodustat), a hypoxia-inducibe factor prolyl hydroxylase inhibitor, stabilizes HIF-α protein and induces erythropoiesis without effects on the function of vascular endothelial growth factor. European Journal of Pharmacology, 2019, 859, 172532.	3.5	32
23	Comprehensive three-dimensional analysis (CUBIC-kidney) visualizes abnormal renal sympathetic nerves after ischemia/reperfusion injury. Kidney International, 2019, 96, 129-138.	5.2	34
24	Hypoxia-Inducible Factor-Prolyl Hydroxylase Domain Inhibitors to Treat Anemia in Chronic Kidney Disease. Contributions To Nephrology, 2019, 198, 112-123.	1.1	22
25	Inhibition of prolyl hydroxylase domain (PHD) by JTZ-951 reduces obesity-related diseases in the liver, white adipose tissue, and kidney in mice with a high-fat diet. Laboratory Investigation, 2019, 99, 1217-1232.	3.7	33
26	Prolyl hydroxylase domain inhibitors: a new era in the management of renal anemia. Annals of Translational Medicine, 2019, 7, S334-S334.	1.7	4
27	Tipping the Balance from Angiogenesis to Fibrosis in Chronic Kidney Disease. Molecular and Translational Medicine, 2019, , 419-449.	0.4	Ο
28	Regulatory roles of hypoxia-inducible, noncoding RNAs on mitochondrial dynamics during AKI. Kidney International, 2019, 95, 252-253.	5.2	2
29	Multiple consequences of HIF activation in CKD. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 2-S13-4.	0.0	Ο
30	Genome-wide analysis revealed that DZNep reduces tubulointerstitial fibrosis via down-regulation of pro-fibrotic genes. Scientific Reports, 2018, 8, 3779.	3.3	17
31	Intravital phosphorescence lifetime imaging of the renal cortex accurately measures renal hypoxia. Kidney International, 2018, 93, 1483-1489.	5.2	31
32	The Anticipated Renoprotective Effects of Sodium-glucose Cotransporter 2 Inhibitors. Internal Medicine, 2018, 57, 2105-2114.	0.7	22
33	Persistent expression of neutrophil gelatinase-associated lipocalin and M2 macrophage markers and chronic fibrosis after acute kidney injury. Physiological Reports, 2018, 6, e13707.	1.7	16
34	Guidelines for clinical evaluation of chronic kidney disease. Clinical and Experimental Nephrology, 2018, 22, 1446-1475.	1.6	23
35	Sodium–glucose cotransporter 2 inhibition normalizes glucose metabolism and suppresses oxidative stress in the kidneys of diabetic mice. Kidney International, 2018, 94, 912-925.	5.2	123
36	HIF Activation Against CVD in CKD: Novel Treatment Opportunities. Seminars in Nephrology, 2018, 38, 267-276.	1.6	29

#	Article	IF	CITATIONS
37	Hypoxia-inducible factor stabilizers for treating anemia of chronic kidney disease. Current Opinion in Nephrology and Hypertension, 2018, 27, 331-338.	2.0	43
38	Palmitate deranges erythropoietin production via transcription factor ATF4 activation of unfolded protein response. Kidney International, 2018, 94, 536-550.	5.2	30
39	Mechanisms of metabolic memory and renal hypoxia as a therapeutic target in diabetic kidney disease. Journal of Diabetes Investigation, 2017, 8, 261-271.	2.4	37
40	Novel Inc RNA regulated by HIF-1 inhibits apoptotic cell death in the renal tubular epithelial cells under hypoxia. Physiological Reports, 2017, 5, e13203.	1.7	31
41	Effect of AST-120 in Chronic Kidney Disease Treatment: Still a Controversy?. Nephron, 2017, 135, 201-206.	1.8	41
42	PHD in the FOXD1 lineage cells links hypoxia to inappropriate nephrogenesis. Kidney International, 2017, 92, 1314-1316.	5.2	0
43	Prolyl hydroxylase domain inhibitors as a novel therapeutic approach against anemia in chronic kidney disease. Kidney International, 2017, 92, 306-312.	5.2	98
44	A mechanistic link between renal ischemia and fibrosis. Medical Molecular Morphology, 2017, 50, 1-8.	1.0	30
45	Hypoxia and hypoxia-inducible factors in chronic kidney disease. Renal Replacement Therapy, 2016, 2, .	0.7	24
46	New insights into molecular mechanisms of epigenetic regulation in kidney disease. Clinical and Experimental Pharmacology and Physiology, 2016, 43, 1159-1167.	1.9	17
47	Expanding roles of the hypoxia-response network in chronic kidney disease. Clinical and Experimental Nephrology, 2016, 20, 835-844.	1.6	44
48	Recent advances in understanding of chronic kidney disease. F1000Research, 2015, 4, 1212.	1.6	27
49	How the Target Hemoglobin of Renal Anemia Should Be?. Nephron, 2015, 131, 202-209.	1.8	287
50	Hypoxia and Dysregulated Angiogenesis in Kidney Disease. Kidney Diseases (Basel, Switzerland), 2015, 1, 80-89.	2.5	58
51	Role of Uremic Toxins in Erythropoiesis-Stimulating Agent Resistance in Chronic Kidney Disease and Dialysis Patients. , 2015, 25, 160-163.		34
52	Anti-inflammatory role of DPP-4 inhibitors in a nondiabetic model of glomerular injury. American Journal of Physiology - Renal Physiology, 2015, 308, F878-F887.	2.7	56
53	Inflammation and hypoxia linked to renal injury by CCAAT/enhancer-binding protein δ. Kidney International, 2015, 88, 262-275.	5.2	64
54	Hypoxia and fibrosis in chronic kidney disease: crossing at pericytes. Kidney International Supplements, 2014, 4, 107-112.	14.2	67

#	Article	IF	CITATIONS
55	ANO1: an additional key player in cyst growth. Kidney International, 2014, 85, 1007-1009.	5.2	9
56	Role of hypoxia in progressive chronic kidney disease and implications for therapy. Current Opinion in Nephrology and Hypertension, 2014, 23, 161-168.	2.0	66
57	The potential for renoprotection with incretin-based drugs. Kidney International, 2014, 86, 701-711.	5.2	103
58	Hypoxia as a key player in the AKI-to-CKD transition. American Journal of Physiology - Renal Physiology, 2014, 307, F1187-F1195.	2.7	202
59	Sperm-Associated Antigen 4, a Novel Hypoxia-Inducible Factor 1 Target, Regulates Cytokinesis, and Its Expression Correlates with the Prognosis of Renal Cell Carcinoma. American Journal of Pathology, 2013, 182, 2191-2203.	3.8	27
60	Novel Therapeutic Strategy With Hypoxia-Inducible Factors via Reversible Epigenetic Regulation Mechanisms in Progressive Tubulointerstitial Fibrosis. Seminars in Nephrology, 2013, 33, 375-382.	1.6	40
61	Angiogenesis and hypoxia in the kidney. Nature Reviews Nephrology, 2013, 9, 211-222.	9.6	118
62	Indoxyl sulfate signals for rapid mRNA stabilization of Cbp/p300â€interacting transactivator with Glu/Aspâ€rich carboxyâ€terminal domain 2 (CITED2) and suppresses the expression of hypoxiaâ€inducible genes in experimental CKD and uremia. FASEB Journal, 2013, 27, 4059-4075.	0.5	42
63	Anthracycline Inhibits Recruitment of Hypoxia-inducible Transcription Factors and Suppresses Tumor Cell Migration and Cardiac Angiogenic Response in the Host. Journal of Biological Chemistry, 2012, 287, 34866-34882.	3.4	40
64	The role of incretins in salt-sensitive hypertension. Current Opinion in Nephrology and Hypertension, 2011, 20, 476-481.	2.0	26
65	Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Laboratory Investigation, 2011, 91, 1564-1571.	3.7	132
66	Indoxyl sulfate inhibits proliferation of human proximal tubular cells via endoplasmic reticulum stress. American Journal of Physiology - Renal Physiology, 2010, 299, F568-F576.	2.7	75
67	Uremia induces abnormal oxygen consumption in tubules and aggravates chronic hypoxia of the kidney via oxidative stress. American Journal of Physiology - Renal Physiology, 2010, 299, F380-F386.	2.7	68
68	Cytoglobin, a novel globin, plays an antifibrotic role in the kidney. American Journal of Physiology - Renal Physiology, 2010, 299, F1120-F1133.	2.7	42
69	Protective Role of Hypoxia-Inducible Factor-2α against Ischemic Damage and Oxidative Stress in the Kidney. Journal of the American Society of Nephrology: JASN, 2007, 18, 1218-1226.	6.1	119
70	Hypoxia and Expression of Hypoxia-Inducible Factor in the Aging Kidney. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 795-805.	3.6	88
71	High Glucose Blunts Vascular Endothelial Growth Factor Response to Hypoxia via the Oxidative Stress-Regulated Hypoxia-Inducible Factor/Hypoxia-Responsible Element Pathway. Journal of the American Society of Nephrology: JASN, 2006, 17, 1405-1413.	6.1	115
72	Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thy1 nephritis. Kidney International, 2005, 68, 2714-2725.	5.2	110

#	Article	IF	CITATIONS
73	Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Laboratory Investigation, 2005, 85, 1292-1307.	3.7	213
74	Hypoxia-inducible factor modulates tubular cell survival in cisplatin nephrotoxicity. American Journal of Physiology - Renal Physiology, 2005, 289, F1123-F1133.	2.7	90
75	Blockade of Calcium Influx through L-Type Calcium Channels Attenuates Mitochondrial Injury and Apoptosis in Hypoxic Renal Tubular Cells. Journal of the American Society of Nephrology: JASN, 2004, 15, 2320-2333.	6.1	73
76	Evidence of Tubular Hypoxia in the Early Phase in the Remnant Kidney Model. Journal of the American Society of Nephrology: JASN, 2004, 15, 1277-1288.	6.1	213
77	Hypoperfusion of Peritubular Capillaries Induces Chronic Hypoxia before Progression of Tubulointerstitial Injury in a Progressive Model of Rat Clomerulonephritis. Journal of the American Society of Nephrology: JASN, 2004, 15, 1574-1581.	6.1	147
78	Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney International, 2004, 65, 871-880.	5.2	172
79	Hypoxia in Renal Disease with Proteinuria and/or Glomerular Hypertension. American Journal of Pathology, 2004, 165, 1979-1992.	3.8	107
80	Hypoxia-induced apoptosis in cultured glomerular endothelial cells: Involvement of mitochondrial pathways. Kidney International, 2003, 64, 2020-2032.	5.2	61
81	Hypoxia induces apoptosis in SV40-immortalized rat proximal tubular cells through the mitochondrial pathways, devoid of HIF1-mediated upregulation of Bax. Biochemical and Biophysical Research Communications, 2003, 309, 222-231.	2.1	65
82	Induction of Renoprotective Gene Expression by Cobalt Ameliorates Ischemic Injury of the Kidney in Rats. Journal of the American Society of Nephrology: JASN, 2003, 14, 1825-1832.	6.1	239