
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3467020/publications.pdf Version: 2024-02-01

DONALD REDS

#	Article	IF	CITATIONS
1	Cardiac excitation–contraction coupling. Nature, 2002, 415, 198-205.	27.8	3,846
2	Calcium Cycling and Signaling in Cardiac Myocytes. Annual Review of Physiology, 2008, 70, 23-49.	13.1	1,099
3	Excitation-Contraction Coupling and Cardiac Contractile Force. Developments in Cardiovascular Medicine, 2001, , .	0.1	880
4	Arrhythmogenesis and Contractile Dysfunction in Heart Failure. Circulation Research, 2001, 88, 1159-1167.	4.5	723
5	Ca 2+ /Calmodulin–Dependent Protein Kinase Modulates Cardiac Ryanodine Receptor Phosphorylation and Sarcoplasmic Reticulum Ca 2+ Leak in Heart Failure. Circulation Research, 2005, 97, 1314-1322.	4.5	614
6	Abnormal Calcium Handling Properties Underlie Familial Hypertrophic Cardiomyopathy Pathology in Patient-Specific Induced Pluripotent Stem Cells. Cell Stem Cell, 2013, 12, 101-113.	11.1	584
7	A Practical Guide to the Preparation of Ca2+ Buffers. Methods in Cell Biology, 1994, 40, 3-29.	1.1	557
8	The δCIsoform of CaMKII Is Activated in Cardiac Hypertrophy and Induces Dilated Cardiomyopathy and Heart Failure. Circulation Research, 2003, 92, 912-919.	4.5	528
9	Calcium Fluxes Involved in Control of Cardiac Myocyte Contraction. Circulation Research, 2000, 87, 275-281.	4.5	522
10	Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature, 2013, 502, 372-376.	27.8	495
11	A Mathematical Treatment of Integrated Ca Dynamics within the Ventricular Myocyte. Biophysical Journal, 2004, 87, 3351-3371.	0.5	481
12	Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. Journal of Clinical Investigation, 2006, 116, 3127-3138.	8.2	474
13	Drug Screening Using a Library of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes Reveals Disease-Specific Patterns of Cardiotoxicity. Circulation, 2013, 127, 1677-1691.	1.6	472
14	Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. Journal of Clinical Investigation, 2006, 116, 675-682.	8.2	427
15	Cellular Basis of Abnormal Calcium Transients of Failing Human Ventricular Myocytes. Circulation Research, 2003, 92, 651-658.	4.5	420
16	Transgenic CaMKIIδCOverexpression Uniquely Alters Cardiac Myocyte Ca2+Handling. Circulation Research, 2003, 92, 904-911.	4.5	409
17	A novel computational model of the human ventricular action potential and Ca transient. Journal of Molecular and Cellular Cardiology, 2010, 48, 112-121.	1.9	393
18	CaMKII in myocardial hypertrophy and heart failure. Journal of Molecular and Cellular Cardiology, 2011, 51, 468-473.	1.9	383

#	Article	IF	CITATIONS
19	Upregulation of Na ⁺ /Ca ²⁺ Exchanger Expression and Function in an Arrhythmogenic Rabbit Model of Heart Failure. Circulation Research, 1999, 85, 1009-1019.	4.5	379
20	Human Atrial Action Potential and Ca ²⁺ Model. Circulation Research, 2011, 109, 1055-1066.	4.5	368
21	Ca ²⁺ Handling and Sarcoplasmic Reticulum Ca ²⁺ Content in Isolated Failing and Nonfailing Human Myocardium. Circulation Research, 1999, 85, 38-46.	4.5	349
22	Requirement for Ca2+/calmodulin–dependent kinase II in the transition from pressure overload–induced cardiac hypertrophy to heart failure in mice. Journal of Clinical Investigation, 2009, 119, 1230-1240.	8.2	333
23	Cellular Basis of Triggered Arrhythmias in Heart Failure. Trends in Cardiovascular Medicine, 2004, 14, 61-66.	4.9	310
24	Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. Biophysical Journal, 1996, 70, 1494-1504.	0.5	306
25	Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations. Biophysical Journal, 2008, 95, 2368-2390.	0.5	304
26	Intracellular Na + Concentration Is Elevated in Heart Failure But Na/K Pump Function Is Unchanged. Circulation, 2002, 105, 2543-2548.	1.6	292
27	Sarcoplasmic Reticulum Ca ²⁺ Release Causes Myocyte Depolarization. Circulation Research, 2000, 87, 774-780.	4.5	291
28	Elevated Sarcoplasmic Reticulum Ca 2+ Leak in Intact Ventricular Myocytes From Rabbits in Heart Failure. Circulation Research, 2003, 93, 592-594.	4.5	291
29	Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation–contraction coupling in the heart. Cardiovascular Research, 2007, 73, 631-640.	3.8	286
30	Oxygen-bridged Dinuclear Ruthenium Amine Complex Specifically Inhibits Ca2+ Uptake into Mitochondria in Vitroand in Situ in Single Cardiac Myocytes. Journal of Biological Chemistry, 1998, 273, 10223-10231.	3.4	285
31	The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart. Cell Reports, 2015, 12, 15-22.	6.4	284
32	Altered Cardiac Myocyte Ca Regulation In Heart Failure. Physiology, 2006, 21, 380-387.	3.1	279
33	β-Adrenergic Enhancement of Sarcoplasmic Reticulum Calcium Leak in Cardiac Myocytes Is Mediated by Calcium/Calmodulin-Dependent Protein Kinase. Circulation Research, 2007, 100, 391-398.	4.5	278
34	Hypercontractile Female Hearts Exhibit Increased S -Nitrosylation of the L-Type Ca 2+ Channel α1 Subunit and Reduced Ischemia/Reperfusion Injury. Circulation Research, 2006, 98, 403-411.	4.5	272
35	Intracellular Na+ regulation in cardiac myocytes. Cardiovascular Research, 2003, 57, 897-912.	3.8	269
36	Macromolecular complexes regulating cardiac ryanodine receptor function. Journal of Molecular and Cellular Cardiology, 2004, 37, 417-429.	1.9	269

#	Article	IF	CITATIONS
37	SparkMaster: automated calcium spark analysis with ImageJ. American Journal of Physiology - Cell Physiology, 2007, 293, C1073-C1081.	4.6	269
38	Sarcoplasmic Reticulum Ca 2+ and Heart Failure. Circulation Research, 2003, 93, 487-490.	4.5	267
39	Cardiac Sarcoplasmic Reticulum Calcium Leak: Basis and Roles in Cardiac Dysfunction. Annual Review of Physiology, 2014, 76, 107-127.	13.1	266
40	Ryanodine Receptor Phosphorylation by Calcium/Calmodulin-Dependent Protein Kinase II Promotes Life-Threatening Ventricular Arrhythmias in Mice With Heart Failure. Circulation, 2010, 122, 2669-2679.	1.6	261
41	Quantitative Assessment of the SR Ca2+Leak-Load Relationship. Circulation Research, 2002, 91, 594-600.	4.5	260
42	Reactive Oxygen Species–Activated Ca/Calmodulin Kinase IIÎ′ Is Required for Late <i>I</i> _{Na} Augmentation Leading to Cellular Na and Ca Overload. Circulation Research, 2011, 108, 555-565.	4.5	256
43	Potentiation of Fractional Sarcoplasmic Reticulum Calcium Release by Total and Free Intra-Sarcoplasmic Reticulum Calcium Concentration. Biophysical Journal, 2000, 78, 334-343.	0.5	255
44	Calcium, Calmodulin, and Calcium-Calmodulin Kinase II: Heartbeat to Heartbeat and Beyond. Journal of Molecular and Cellular Cardiology, 2002, 34, 919-939.	1.9	247
45	Protein Kinase A Phosphorylation of the Ryanodine Receptor Does Not Affect Calcium Sparks in Mouse Ventricular Myocytes. Circulation Research, 2002, 90, 309-316.	4.5	243
46	A Practical Guide to the Preparation of Ca2+ Buffers. Methods in Cell Biology, 2010, 99, 1-26.	1.1	234
47	Ca 2+ /Calmodulin-Dependent Protein Kinase II Phosphorylation of Ryanodine Receptor Does Affect Calcium Sparks in Mouse Ventricular Myocytes. Circulation Research, 2006, 99, 398-406.	4.5	231
48	Excitation-Contraction Coupling and Cardiac Contractile Force. Journal of Cardiovascular Disease Research (discontinued), 2010, 1, 45.	0.1	214
49	Intracellular calcium and sodium activity in sheep heart Purkinje fibres. Pflugers Archiv European Journal of Physiology, 1982, 393, 171-178.	2.8	209
50	Nitroxyl Improves Cellular Heart Function by Directly Enhancing Cardiac Sarcoplasmic Reticulum Ca 2+ Cycling. Circulation Research, 2007, 100, 96-104.	4.5	209
51	Phosphorylation of phospholamban and troponin I in β-adrenergic-induced acceleration of cardiac relaxation. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H769-H779.	3.2	198
52	Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes. Cell Reports, 2020, 32, 107925.	6.4	198
53	Ca 2+ Scraps. Circulation Research, 2003, 93, 40-45.	4.5	193
54	Ca channels in cardiac myocytes: structure and function in Ca influx and intracellular Ca release. Cardiovascular Research, 1999, 42, 339-360.	3.8	189

#	Article	IF	CITATIONS
55	Patient-Specific and Genome-Edited Induced Pluripotent Stem Cell–Derived Cardiomyocytes Elucidate Single-Cell Phenotype of Brugada Syndrome. Journal of the American College of Cardiology, 2016, 68, 2086-2096.	2.8	185
56	CaMKIIδ Isoforms Differentially Affect Calcium Handling but Similarly Regulate HDAC/MEF2 Transcriptional Responses. Journal of Biological Chemistry, 2007, 282, 35078-35087.	3.4	182
57	KB-R7943 Block of Ca ²⁺ Influx Via Na ⁺ /Ca ²⁺ Exchange Does Not Alter Twitches or Glycoside Inotropy but Prevents Ca ²⁺ Overload in Rat Ventricular Myocytes. Circulation, 2000, 101, 1441-1446.	1.6	180
58	Na + -Ca 2+ Exchange Current and Submembrane [Ca 2+] During the Cardiac Action Potential. Circulation Research, 2002, 90, 182-189.	4.5	180
59	Calibration of indo-1 and resting intracellular [Ca]i in intact rabbit cardiac myocytes. Biophysical Journal, 1995, 68, 1453-1460.	0.5	173
60	Increased Sarcoplasmic Reticulum Calcium Leak but Unaltered Contractility by Acute CaMKII Overexpression in Isolated Rabbit Cardiac Myocytes. Circulation Research, 2006, 98, 235-244.	4.5	171
61	Epigenetic Regulation of Phosphodiesterases 2A and 3A Underlies Compromised β-Adrenergic Signaling in an iPSC Model of Dilated Cardiomyopathy. Cell Stem Cell, 2015, 17, 89-100.	11.1	170
62	LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. American Journal of Physiology - Cell Physiology, 2001, 281, C2049-C2060.	4.6	169
63	FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility. Nature Communications, 2017, 8, 15031.	12.8	166
64	Phospholemman-Phosphorylation Mediates the β-Adrenergic Effects on Na/K Pump Function in Cardiac Myocytes. Circulation Research, 2005, 97, 252-259.	4.5	164
65	Cardiac Myocytes Ca2+ and Na+ Regulation in Normal and Failing Hearts. Journal of Pharmacological Sciences, 2006, 100, 315-322.	2.5	161
66	Na ⁺ /Ca ²⁺ exchange and Na ⁺ /K ⁺ â€ATPase in the heart. Journal of Physiology, 2015, 593, 1361-1382.	2.9	160
67	Subcellular [Ca ²⁺] _i Gradients During Excitation-Contraction Coupling in Newborn Rabbit Ventricular Myocytes. Circulation Research, 1999, 85, 415-427.	4.5	158
68	Cardiac Type 2 Inositol 1,4,5-Trisphosphate Receptor. Journal of Biological Chemistry, 2005, 280, 15912-15920.	3.4	157
69	Frequency-dependent Acceleration of Relaxation in the Heart Depends on CaMKII, but not Phospholamban. Journal of Molecular and Cellular Cardiology, 2002, 34, 975-984.	1.9	156
70	OPA1 Mutation and Lateâ€Onset Cardiomyopathy: Mitochondrial Dysfunction and mtDNA Instability. Journal of the American Heart Association, 2012, 1, e003012.	3.7	156
71	Ca ²⁺ spark-dependent and -independent sarcoplasmic reticulum Ca ²⁺ leak in normal and failing rabbit ventricular myocytes. Journal of Physiology, 2010, 588, 4743-4757.	2.9	155
72	The IP ₃ Receptor Regulates Cardiac Hypertrophy in Response to Select Stimuli. Circulation Research, 2010, 107, 659-666.	4.5	154

#	Article	IF	CITATIONS
73	Isolation and characterization of cardiac sarcolemma. Biochimica Et Biophysica Acta - Biomembranes, 1979, 555, 131-146.	2.6	153
74	Sarcoplasmic Reticulum and Nuclear Envelope Are One Highly Interconnected Ca 2+ Store Throughout Cardiac Myocyte. Circulation Research, 2006, 99, 283-291.	4.5	153
75	Allosteric Regulation of Na/Ca Exchange Current by Cytosolic Ca in Intact Cardiac Myocytes. Journal of General Physiology, 2001, 117, 119-132.	1.9	151
76	The effect of Ca2+-calmodulin-dependent protein kinase II on cardiac excitation-contraction coupling in ferret ventricular myocytes. Journal of Physiology, 1997, 501, 17-31.	2.9	150
77	Modulation of excitation-contraction coupling by isoproterenol in cardiomyocytes with controlled SR Ca2+load and Ca2+current trigger. Journal of Physiology, 2004, 556, 463-480.	2.9	149
78	Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. Biophysical Journal, 1994, 67, 1775-1787.	0.5	147
79	Cardiac Alternans Do Not Rely on Diastolic Sarcoplasmic Reticulum Calcium Content Fluctuations. Circulation Research, 2006, 99, 740-748.	4.5	147
80	Epac2 Mediates Cardiac β1-Adrenergic–Dependent Sarcoplasmic Reticulum Ca ²⁺ Leak and Arrhythmia. Circulation, 2013, 127, 913-922.	1.6	145
81	Decreased cardiac L-type Ca2+ channel activity induces hypertrophy and heart failure in mice. Journal of Clinical Investigation, 2012, 122, 280-290.	8.2	145
82	Sodium-calcium exchange and sidedness of isolated cardiac sarcolemmal vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1980, 601, 358-371.	2.6	143
83	Ca ²⁺ /Calmodulin-Dependent Protein Kinase IIδ and Protein Kinase D Overexpression Reinforce the Histone Deacetylase 5 Redistribution in Heart Failure. Circulation Research, 2008, 102, 695-702.	4.5	143
84	Termination of Cardiac Ca ²⁺ Sparks. Circulation Research, 2008, 103, e105-15.	4.5	141
85	Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII) Regulates Cardiac Sodium Channel NaV1.5 Gating by Multiple Phosphorylation Sites. Journal of Biological Chemistry, 2012, 287, 19856-19869.	3.4	141
86	Calmodulin Mediates Differential Sensitivity of CaMKII and Calcineurin to Local Ca2+ in Cardiac Myocytes. Biophysical Journal, 2008, 95, 4597-4612.	0.5	138
87	Intracellular Na in animal models of hypertrophy and heart failure: contractile function and arrhythmogenesis. Cardiovascular Research, 2003, 57, 887-896.	3.8	137
88	Dynamic Regulation of Sodium/Calcium Exchange Function in Human Heart Failure. Circulation, 2003, 108, 2224-2229.	1.6	136
89	Calcium Signaling in Cardiac Ventricular Myocytes. Annals of the New York Academy of Sciences, 2005, 1047, 86-98.	3.8	134
90	Calcium and Cardiac Rhythms. Circulation Research, 2002, 90, 14-17.	4.5	133

#	Article	IF	CITATIONS
91	Calcium/Calmodulin-dependent Kinase II Regulation of Cardiac Ion Channels. Journal of Cardiovascular Pharmacology, 2009, 54, 180-187.	1.9	132
92	Kinetics of FKBP12.6 Binding to Ryanodine Receptors in Permeabilized Cardiac Myocytes and Effects on Ca Sparks. Circulation Research, 2010, 106, 1743-1752.	4.5	130
93	Local β-Adrenergic Stimulation Overcomes Source-Sink Mismatch to Generate Focal Arrhythmia. Circulation Research, 2012, 110, 1454-1464.	4.5	130
94	Regulation of Ca2+ and Na+ in Normal and Failing Cardiac Myocytes. Annals of the New York Academy of Sciences, 2006, 1080, 165-177.	3.8	128
95	Mechanochemotransduction During Cardiomyocyte Contraction Is Mediated by Localized Nitric Oxide Signaling. Science Signaling, 2014, 7, ra27.	3.6	128
96	Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery. Biophysical Journal, 1996, 71, 1024-1035.	0.5	127
97	Divergent Regulation of Ryanodine Receptor 2 Calcium Release Channels by Arrhythmogenic Human Calmodulin Missense Mutants. Circulation Research, 2014, 114, 1114-1124.	4.5	126
98	Na/Ca Exchange and Na/K-ATPase Function Are Equally Concentrated in Transverse Tubules of Rat Ventricular Myocytes. Biophysical Journal, 2003, 85, 3388-3396.	0.5	124
99	Cardiac myocyte calcium transport in phospholamban knockout mouse: relaxation and endogenous CaMKII effects. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H1335-H1347.	3.2	123
100	Intracellular [Na +] and Na + pump rate in rat and rabbit ventricular myocytes. Journal of Physiology, 2002, 539, 133-143.	2.9	122
101	Targets for therapy in sarcomeric cardiomyopathies. Cardiovascular Research, 2015, 105, 457-470.	3.8	122
102	Ca/Calmodulin Kinase II Differentially Modulates Potassium Currents. Circulation: Arrhythmia and Electrophysiology, 2009, 2, 285-294.	4.8	121
103	Optical Mapping of Sarcoplasmic Reticulum Ca ²⁺ in the Intact Heart. Circulation Research, 2014, 114, 1410-1421.	4.5	119
104	Na+ transport in the normal and failing heart — Remember the balance. Journal of Molecular and Cellular Cardiology, 2013, 61, 2-10.	1.9	118
105	Reverse Mode of the Sarcoplasmic Reticulum Calcium Pump and Load-Dependent Cytosolic Calcium Decline in Voltage-Clamped Cardiac Ventricular Myocytes. Biophysical Journal, 2000, 78, 322-333.	0.5	117
106	Ryanodine receptor phosphorylation at Serine 2030, 2808 and 2814 in rat cardiomyocytes. Biochemical and Biophysical Research Communications, 2008, 376, 80-85.	2.1	113
107	Spontaneous Ca waves in ventricular myocytes from failing hearts depend on Ca2+-calmodulin-dependent protein kinase II. Journal of Molecular and Cellular Cardiology, 2010, 49, 25-32.	1.9	113
108	A Critical Function for Ser-282 in Cardiac Myosin Binding Protein-C Phosphorylation and Cardiac Function. Circulation Research, 2011, 109, 141-150.	4.5	113

#	Article	IF	CITATIONS
109	Hyperamylinemia Contributes to Cardiac Dysfunction in Obesity and Diabetes. Circulation Research, 2012, 110, 598-608.	4.5	113
110	Intracellular Ca ²⁺ Increases the Mitochondrial NADH Concentration During Elevated Work in Intact Cardiac Muscle. Circulation Research, 1997, 80, 82-87.	4.5	112
111	Na-Ca Exchange and Ca Fluxes during Contraction and Relaxation in Mammalian Ventricular Musclea. Annals of the New York Academy of Sciences, 1996, 779, 430-442.	3.8	109
112	Assessment of intra-SR free [Ca] and buffering in rat heart. Biophysical Journal, 1997, 73, 1524-1531.	0.5	109
113	Measuring Local Gradients of Intramitochondrial [Ca ²⁺] in Cardiac Myocytes During Sarcoplasmic Reticulum Ca ²⁺ Release. Circulation Research, 2013, 112, 424-431.	4.5	107
114	Simultaneous Measurements of Mitochondrial NADH and Ca2+ during Increased Work in Intact Rat Heart Trabeculae. Biophysical Journal, 2002, 83, 587-604.	0.5	106
115	Differences in Ca2+-Handling and Sarcoplasmic Reticulum Ca2+-Content in Isolated Rat and Rabbit Myocardium. Journal of Molecular and Cellular Cardiology, 2000, 32, 2249-2258.	1.9	105
116	Akt regulates L-type Ca2+ channel activity by modulating Cavα1 protein stability. Journal of Cell Biology, 2009, 184, 923-933.	5.2	101
117	Expression and Phosphorylation of the Na-Pump Regulatory Subunit Phospholemman in Heart Failure. Circulation Research, 2005, 97, 558-565.	4.5	100
118	Modelling diastolic dysfunction in induced pluripotent stem cell-derived cardiomyocytes from hypertrophic cardiomyopathy patients. European Heart Journal, 2019, 40, 3685-3695.	2.2	100
119	Indo-1 binding to protein in permeabilized ventricular myocytes alters its spectral and Ca binding properties. Biophysical Journal, 1992, 63, 89-97.	0.5	99
120	Simulation of Ca-Calmodulin-Dependent Protein Kinase II on Rabbit Ventricular Myocyte Ion Currents and Action Potentials. Biophysical Journal, 2007, 93, 3835-3847.	0.5	99
121	Arrhythmogenic Effects of β ₂ -Adrenergic Stimulation in the Failing Heart Are Attributable to Enhanced Sarcoplasmic Reticulum Ca Load. Circulation Research, 2008, 102, 1389-1397.	4.5	98
122	Late Sodium Current Contributes to the Reverse Rate-Dependent Effect of I _{Kr} Inhibition on Ventricular Repolarization. Circulation, 2011, 123, 1713-1720.	1.6	97
123	Role of Sodium and Calcium Dysregulation in Tachyarrhythmias in Sudden Cardiac Death. Circulation Research, 2015, 116, 1956-1970.	4.5	96
124	Constitutive BDNF/TrkB signaling is required for normal cardiac contraction and relaxation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1880-1885.	7.1	96
125	GRAM domain proteins specialize functionally distinct ER-PM contact sites in human cells. ELife, 2018, 7, .	6.0	96
126	Cytosolic and mitochondrial Ca2+signals in patch clamped mammalian ventricular myocytes. Journal of Physiology, 1998, 507, 379-403.	2.9	95

#	Article	IF	CITATIONS
127	Phospholamban Ablation Rescues Sarcoplasmic Reticulum Ca ²⁺ Handling but Exacerbates Cardiac Dysfunction in CaMKIIδ _C Transgenic Mice. Circulation Research, 2010, 106, 354-362.	4.5	95
128	Effects of FK-506 on Contraction and Ca ²⁺ Transients in Rat Cardiac Myocytes. Circulation Research, 1996, 79, 1110-1121.	4.5	95
129	Ca ²⁺ Influx Through Ca ²⁺ Channels in Rabbit Ventricular Myocytes During Action Potential Clamp. Circulation Research, 1999, 85, e7-e16.	4.5	93
130	Biosensors to Measure Inositol 1,4,5-Trisphosphate Concentration in Living Cells with Spatiotemporal Resolution. Journal of Biological Chemistry, 2006, 281, 608-616.	3.4	92
131	CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2019, 127, 246-259.	1.9	92
132	Regulation of the cloned L-type cardiac calcium channel by cyclic-AMP-dependent protein kinase. FEBS Letters, 1994, 342, 119-123.	2.8	91
133	CaMKII inhibition targeted to the sarcoplasmic reticulum inhibits frequency-dependent acceleration of relaxation and Ca2+ current facilitation. Journal of Molecular and Cellular Cardiology, 2007, 42, 196-205.	1.9	91
134	Modulation of SR Ca Release by Luminal Ca and Calsequestrin in Cardiac Myocytes: Effects of CASQ2 Mutations Linked to Sudden Cardiac Death. Biophysical Journal, 2008, 95, 2037-2048.	0.5	91
135	Dynamic Calcium Movement Inside Cardiac Sarcoplasmic Reticulum During Release. Circulation Research, 2011, 108, 847-856.	4.5	91
136	Oxidation of ryanodine receptor (RyR) and calmodulin enhance Ca release and pathologically alter, RyR structure and calmodulin affinity. Journal of Molecular and Cellular Cardiology, 2015, 85, 240-248.	1.9	91
137	Differential distribution and regulation of mouse cardiac Na+/K+-ATPase α1 and α2 subunits in T-tubule and surface sarcolemmal membranes. Cardiovascular Research, 2007, 73, 92-100.	3.8	90
138	Free and bound intracellular calmodulin measurements in cardiac myocytes. Cell Calcium, 2007, 41, 353-364.	2.4	88
139	Individual Cardiac Mitochondria Undergo Rare Transient Permeability Transition Pore Openings. Circulation Research, 2016, 118, 834-841.	4.5	88
140	Spatiotemporal characteristics of SR Ca uptake and release in detubulated rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2005, 39, 804-812.	1.9	87
141	AKAP150 Contributes to Enhanced Vascular Tone by Facilitating Large-Conductance Ca ²⁺ -Activated K ⁺ Channel Remodeling in Hyperglycemia and Diabetes Mellitus. Circulation Research, 2014, 114, 607-615.	4.5	86
142	Sarcoplasmic Reticulum Calcium Overloading in Junctin Deficiency Enhances Cardiac Contractility but Increases Ventricular Automaticity. Circulation, 2007, 115, 300-309.	1.6	85
143	Calcium and Cardiomyopathies. , 2007, 45, 523-537.		85
144	Cardiac Na/Ca Exchange Function in Rabbit, Mouse and Man: What's the Difference?. Journal of Molecular and Cellular Cardiology, 2002, 34, 369-373.	1.9	84

#	Article	IF	CITATIONS
145	Altered myocardial Ca2+cycling after left ventricular assist device support in the failing human heart. Journal of the American College of Cardiology, 2004, 44, 837-845.	2.8	83
146	Regulation of Cardiac Sarcoplasmic Reticulum Ca Release by Luminal [Ca] and Altered Gating Assessed with a Mathematical Model. Biophysical Journal, 2005, 89, 4096-4110.	0.5	82
147	Fluorescence Resonance Energy Transfer–Based Sensor Camui Provides New Insight Into Mechanisms of Calcium/Calmodulin-Dependent Protein Kinase II Activation in Intact Cardiomyocytes. Circulation Research, 2011, 109, 729-738.	4.5	82
148	Hyperglycemia Acutely Increases Cytosolic Reactive Oxygen Species via <i>O</i> -linked GlcNAcylation and CaMKII Activation in Mouse Ventricular Myocytes. Circulation Research, 2020, 126, e80-e96.	4.5	82
149	Paradoxical Twitch Potentiation After Rest in Cardiac Muscle: Increased Fractional Release of SR Calcium. Journal of Molecular and Cellular Cardiology, 1993, 25, 1047-1057.	1.9	81
150	S-Nitrosylation Induces Both Autonomous Activation and Inhibition of Calcium/Calmodulin-dependent Protein Kinase II δ. Journal of Biological Chemistry, 2015, 290, 25646-25656.	3.4	81
151	Post-translational modifications of the cardiac Na channel: contribution of CaMKII-dependent phosphorylation to acquired arrhythmias. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H431-H445.	3.2	80
152	CaMKII-dependent phosphorylation of RyR2 promotes targetable pathological RyR2 conformational shift. Journal of Molecular and Cellular Cardiology, 2016, 98, 62-72.	1.9	80
153	Ranolazine for Congenital and Acquired Late I _{Na} -Linked Arrhythmias. Circulation Research, 2013, 113, e50-e61.	4.5	79
154	Potassium channels in the heart: structure, function and regulation. Journal of Physiology, 2017, 595, 2209-2228.	2.9	79
155	Rate of diastolic Ca release from the sarcoplasmic reticulum of intact rabbit and rat ventricular myocytes. Biophysical Journal, 1995, 68, 2015-2022.	0.5	78
156	Myocyte Nitric Oxide Synthase 2 Contributes to Blunted β-Adrenergic Response in Failing Human Hearts by Decreasing Ca 2+ Transients. Circulation, 2004, 109, 1886-1891.	1.6	78
157	Chasing cardiac physiology and pathology down the CaMKII cascade. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1177-H1191.	3.2	78
158	The mechanism of ryanodine action in rabbit ventricular muscle evaluated with Ca-selective microelectrodes and rapid cooling contractures. Canadian Journal of Physiology and Pharmacology, 1987, 65, 610-618.	1.4	77
159	Expression of Inducible Nitric Oxide Synthase Depresses β-Adrenergic–Stimulated Calcium Release From the Sarcoplasmic Reticulum in Intact Ventricular Myocytes. Circulation, 2001, 104, 2961-2966.	1.6	77
160	Na+/K+-ATPase Â2-isoform preferentially modulates Ca2+ transients and sarcoplasmic reticulum Ca2+ release in cardiac myocytes. Cardiovascular Research, 2012, 95, 480-486.	3.8	77
161	Phospholemman-Mediated Activation of Na/K-ATPase Limits [Na] _i and Inotropic State During β-Adrenergic Stimulation in Mouse Ventricular Myocytes. Circulation, 2008, 117, 1849-1855.	1.6	76
162	Ryanodine Receptor S2808 Phosphorylation in Heart Failure. Circulation Research, 2012, 110, 796-799.	4.5	76

#	Article	IF	CITATIONS
163	Potassium currents in the heart: functional roles in repolarization, arrhythmia and therapeutics. Journal of Physiology, 2017, 595, 2229-2252.	2.9	76
164	Size Matters: Ryanodine Receptor Cluster Size Affects Arrhythmogenic Sarcoplasmic Reticulum Calcium Release. Journal of the American Heart Association, 2018, 7, .	3.7	76
165	Temporal dissociation of frequency-dependent acceleration of relaxation and protein phosphorylation by CaMKII. Journal of Molecular and Cellular Cardiology, 2007, 42, 590-599.	1.9	74
166	Mitochondrial free calcium regulation during sarcoplasmic reticulum calcium release in rat cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2009, 46, 1027-1036.	1.9	74
167	Early Remodeling of Perinuclear Ca ²⁺ Stores and Nucleoplasmic Ca ²⁺ Signaling During the Development of Hypertrophy and Heart Failure. Circulation, 2014, 130, 244-255.	1.6	74
168	Calcium transport and the regulation of cardiac contractility in teleosts: a comparison with higher vertebrates. Canadian Journal of Zoology, 1991, 69, 2014-2019.	1.0	73
169	Na-Ca Exchange is Required for Rest-decay but not for Rest-potential of Twitches in Rabbit and Rat Ventricular Myocytes. Journal of Molecular and Cellular Cardiology, 1994, 26, 1335-1347.	1.9	72
170	Transgenic Rabbit Model for Human Troponin l–Based Hypertrophic Cardiomyopathy. Circulation, 2005, 111, 2330-2338.	1.6	72
171	The inotropic effect of cardioactive glycosides in ventricular myocytes requires Na+-Ca2+exchanger function. Journal of Physiology, 2006, 575, 845-854.	2.9	72
172	Complex electrophysiological remodeling in postinfarction ischemic heart failure. Proceedings of the United States of America, 2018, 115, E3036-E3044.	7.1	72
173	When Is cAMP Not cAMP?. Circulation Research, 2001, 89, 373-375.	4.5	72
174	Location Matters. Circulation Research, 2011, 109, 1354-1362.	4.5	70
175	Cardiac Myocyte Z-Line Calmodulin Is Mainly RyR2-Bound, and Reduction Is Arrhythmogenic and Occurs in Heart Failure. Circulation Research, 2014, 114, 295-306.	4.5	69
176	CaMKIIδ mediates β-adrenergic effects on RyR2 phosphorylation and SR Ca2+ leak and the pathophysiological response to chronic β-adrenergic stimulation. Journal of Molecular and Cellular Cardiology, 2015, 85, 282-291.	1.9	69
177	Transmission of Information From Cardiac Dihydropyridine Receptor to Ryanodine Receptor. Circulation Research, 2000, 87, 106-111.	4.5	68
178	Upregulated Na/Ca exchange is involved in both contractile dysfunction and arrhythmogenesis in heart failure. Basic Research in Cardiology, 2002, 97, 1-1.	5.9	68
179	Mitochondrial Quality Control in Aging and Heart Failure: Influence of Ketone Bodies and Mitofusin-Stabilizing Peptides. Frontiers in Physiology, 2019, 10, 382.	2.8	68
180	Atherosclerosis exacerbates arrhythmia following myocardial infarction: Role of myocardial inflammation. Heart Rhythm, 2015, 12, 169-178.	0.7	67

#	Article	IF	CITATIONS
181	Systems Approach to Understanding Electromechanical Activity in the Human Heart. Circulation, 2008, 118, 1202-1211.	1.6	66
182	β-adrenergic stimulation activates early afterdepolarizations transiently via kinetic mismatch of PKA targets. Journal of Molecular and Cellular Cardiology, 2013, 58, 153-161.	1.9	66
183	Calcium and cardiac rhythms: physiological and pathophysiological. Circulation Research, 2002, 90, 14-7.	4.5	66
184	Relaxation in ferret ventricular myocytes: role of the sarcolemmal Ca ATPase. Pflugers Archiv European Journal of Physiology, 1995, 430, 573-578.	2.8	65
185	Stretch-dependent slow force response in isolated rabbit myocardium is Na dependent. Cardiovascular Research, 2003, 57, 1052-1061.	3.8	65
186	Isoform Specificity of the Na/K-ATPase Association and Regulation by Phospholemman. Journal of Biological Chemistry, 2009, 284, 26749-26757.	3.4	65
187	Calcium Cycling in Heart Failure: The Arrhythmia Connection. Journal of Cardiovascular Electrophysiology, 2002, 13, 88-91.	1.7	64
188	Phospholemman Phosphorylation Mediates the Protein Kinase C–Dependent Effects on Na + /K + Pump Function in Cardiac Myocytes. Circulation Research, 2006, 99, 1376-1383.	4.5	64
189	Epac enhances excitation–transcription coupling in cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2012, 52, 283-291.	1.9	64
190	Stress Signaling JNK2 Crosstalk With CaMKII Underlies Enhanced Atrial Arrhythmogenesis. Circulation Research, 2018, 122, 821-835.	4.5	64
191	Na/Ca Exchange in Heart Failure. Annals of the New York Academy of Sciences, 2002, 976, 454-465.	3.8	63
192	Nitric Oxide-Dependent Activation of CaMKII Increases Diastolic Sarcoplasmic Reticulum Calcium Release in Cardiac Myocytes in Response to Adrenergic Stimulation. PLoS ONE, 2014, 9, e87495.	2.5	63
193	Functional analysis of Na+/K+-ATPase isoform distribution in rat ventricular myocytes. American Journal of Physiology - Cell Physiology, 2007, 293, C321-C327.	4.6	61
194	Overexpression of the Na ⁺ /K ⁺ ATPase α2 But Not α1 Isoform Attenuates Pathological Cardiac Hypertrophy and Remodeling. Circulation Research, 2014, 114, 249-256.	4.5	61
195	Antiarrhythmic effects of interleukin 1 inhibition after myocardial infarction. Heart Rhythm, 2017, 14, 727-736.	0.7	61
196	Nuclear Translocation of Cardiac G Protein-Coupled Receptor Kinase 5 Downstream of Select Gq-Activating Hypertrophic Ligands Is a Calmodulin-Dependent Process. PLoS ONE, 2013, 8, e57324.	2.5	60
197	The mitochondrial calcium uniporter underlies metabolic fuel preference in skeletal muscle. JCI Insight, 2018, 3, .	5.0	60
198	Isoproterenol does not enhance Ca-dependent Na/Ca exchange current in intact rabbit ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2005, 39, 972-981.	1.9	59

#	Article	IF	CITATIONS
199	How Does Stochastic Ryanodine Receptor-Mediated Ca Leak Fail to Initiate a Ca Spark?. Biophysical Journal, 2011, 101, 2370-2379.	0.5	59
200	Na ⁺ channel function, regulation, structure, trafficking and sequestration. Journal of Physiology, 2015, 593, 1347-1360.	2.9	59
201	Ca Sparks Do Not Explain all Ryanodine Receptor-Mediated SR Ca Leak inÂMouse Ventricular Myocytes. Biophysical Journal, 2010, 98, 2111-2120.	0.5	58
202	Histidine-rich Ca binding protein: aÂregulator ofÂsarcoplasmic reticulum calcium sequestration andÂcardiac function. Journal of Molecular and Cellular Cardiology, 2006, 40, 653-665.	1.9	57
203	Calcium movements inside the sarcoplasmic reticulum of cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2013, 58, 59-66.	1.9	57
204	Novel Epac fluorescent ligand reveals distinct Epac1 vs. Epac2 distribution and function in cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3991-3996.	7.1	57
205	Role of the Sarcoplasmic Reticulum in Contraction and Relaxation of Immature Rabbit Ventricular Myocytes. Journal of Molecular and Cellular Cardiology, 1997, 29, 2747-2757.	1.9	56
206	Voltage Dependence of Cardiac Excitation–Contraction Coupling. Circulation Research, 2007, 101, 590-597.	4.5	56
207	Phospholamban Oligomerization, Quaternary Structure, and Sarco(endo)plasmic Reticulum Calcium ATPase Binding Measured by Fluorescence Resonance Energy Transfer in Living Cells. Journal of Biological Chemistry, 2008, 283, 12202-12211.	3.4	56
208	Positive and negative effects of nitric oxide on Ca ²⁺ sparks: influence of β-adrenergic stimulation. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2295-H2303.	3.2	55
209	Na/K Pump Current and [Na]i in Rabbit Ventricular Myocytes: Local [Na]i Depletion and Na Buffering. Biophysical Journal, 2003, 84, 4157-4166.	0.5	55
210	Excessive Sarcoplasmic/Endoplasmic Reticulum Ca 2+ -ATPase Expression Causes Increased Sarcoplasmic Reticulum Ca 2+ Uptake but Decreases Myocyte Shortening. Circulation, 2004, 110, 3553-3559.	1.6	55
211	β-adrenergic regulation of late Na+ current during cardiac action potential is mediated by both PKA and CaMKII. Journal of Molecular and Cellular Cardiology, 2018, 123, 168-179.	1.9	55
212	Calmodulin binding proteins provide domains of local Ca2+ signaling in cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2012, 52, 312-316.	1.9	54
213	Partial Inhibition of Sarcoplasmic Reticulum Ca Release Evokes Long-Lasting Ca Release Events in Ventricular Myocytes: Role of Luminal Ca in Termination of Ca Release. Biophysical Journal, 2008, 94, 1867-1879.	0.5	53
214	β-Adrenergic induced SR Ca 2+ leak is mediated by an Epac-NOS pathway. Journal of Molecular and Cellular Cardiology, 2017, 108, 8-16.	1.9	53
215	Species Differences and the Role of Sodium-Calcium Exchange in Cardiac Muscle Relaxation. Annals of the New York Academy of Sciences, 1991, 639, 375-385.	3.8	52
216	β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model. Journal of Molecular and Cellular Cardiology, 2015, 81, 162-175.	1.9	52

#	Article	IF	CITATIONS
217	Control of Maximum Sarcoplasmic Reticulum Ca Load in Intact Ferret Ventricular Myocytes. Journal of General Physiology, 1998, 111, 491-504.	1.9	51
218	The Real Estate of NOS Signaling. Circulation Research, 2003, 92, 1279-1281.	4.5	51
219	Integrated Ca2+Management in Cardiac Myocytes. Annals of the New York Academy of Sciences, 2004, 1015, 28-38.	3.8	51
220	High-Throughput Screens to Discover Small-Molecule Modulators of Ryanodine Receptor Calcium Release Channels. SLAS Discovery, 2017, 22, 176-186.	2.7	51
221	The human phospholamban Arg14-deletion mutant localizes to plasma membrane and interacts with the Na/K-ATPase. Journal of Molecular and Cellular Cardiology, 2012, 52, 773-782.	1.9	50
222	Phospholemman Phosphorylation Alters Its Fluorescence Resonance Energy Transfer with the Na/K-ATPase Pump. Journal of Biological Chemistry, 2006, 281, 32765-32773.	3.4	49
223	Ca2+ current facilitation is CaMKII-dependent and has arrhythmogenic consequences. Frontiers in Pharmacology, 2014, 5, 144.	3.5	49
224	Electrodiffusion of ions approaching the mouth of a conducting membrane channel. Biophysical Journal, 1988, 53, 863-875.	0.5	48
225	How to Make and Use Calcium–Specific Mini– and Microelectrodes. Methods in Cell Biology, 1994, , 93-113.	1.1	48
226	Na/K-ATPase—An Integral Player in the Adrenergic Fight-or-Flight Response. Trends in Cardiovascular Medicine, 2009, 19, 111-118.	4.9	48
227	Intracellular signalling mechanism responsible for modulation of sarcolemmal ATPâ€sensitive potassium channels by nitric oxide in ventricular cardiomyocytes. Journal of Physiology, 2014, 592, 971-990.	2.9	48
228	Cardiac Submembrane [Na +] Transients Sensed by Na + -Ca 2+ Exchange Current. Circulation Research, 2003, 92, 950-952.	4.5	47
229	Impaired relaxation in transgenic mice overexpressing junctin. Cardiovascular Research, 2003, 59, 369-379.	3.8	47
230	Targeting of Protein Phosphatases PP2A and PP2B to the C-Terminus of the L-Type Calcium Channel Ca _v 1.2. Biochemistry, 2010, 49, 10298-10307.	2.5	47
231	Theoretical study of Lâ€ŧype Ca ²⁺ current inactivation kinetics during action potential repolarization and early afterdepolarizations. Journal of Physiology, 2012, 590, 4465-4481.	2.9	47
232	Ankyrin-B reduction enhances Ca spark-mediated SR Ca release promoting cardiac myocyte arrhythmic activity. Journal of Molecular and Cellular Cardiology, 2012, 52, 1240-1248.	1.9	47
233	A 20/20 view of ANT function in mitochondrial biology and necrotic cell death. Journal of Molecular and Cellular Cardiology, 2020, 144, A3-A13.	1.9	47
234	Formation of Spatially Discordant Alternans Due to Fluctuations and Diffusion of Calcium. PLoS ONE, 2013, 8, e85365.	2.5	47

#	Article	IF	CITATIONS
235	Analysis of the Mechanisms of Mitochondrial NADH Regulation in Cardiac Trabeculae. Biophysical Journal, 1999, 77, 1666-1682.	0.5	46
236	Deranged sodium to sudden death. Journal of Physiology, 2015, 593, 1331-1345.	2.9	46
237	Atrial-selective targeting of arrhythmogenic phase-3 early afterdepolarizations in human myocytes. Journal of Molecular and Cellular Cardiology, 2016, 96, 63-71.	1.9	46
238	Action potential duration determines sarcoplasmic reticulum Ca2+reloading in mammalian ventricular myocytes. Journal of Physiology, 2004, 559, 593-609.	2.9	45
239	Modeling the isolated cardiac myocyte. Progress in Biophysics and Molecular Biology, 2004, 85, 163-178.	2.9	45
240	Cardiac ryanodine receptor phosphorylation: target sites and functional consequences. Biochemical Journal, 2006, 396, e1-3.	3.7	45
241	Cyclic Stretch Down-regulates Calcium Transporter Gene Expression in Neonatal Rat Ventricular Myocytes. Journal of Molecular and Cellular Cardiology, 1998, 30, 2247-2259.	1.9	44
242	Na:Ca Stoichiometry and Cytosolic Ca-Dependent Activation of NCX in Intact Cardiomyocytes. Annals of the New York Academy of Sciences, 2007, 1099, 326-338.	3.8	44
243	Acute β-Adrenergic Activation Triggers Nuclear Import of Histone Deacetylase 5 and Delays Gq-induced Transcriptional Activation. Journal of Biological Chemistry, 2013, 288, 192-204.	3.4	44
244	Junctional Cleft [Ca ²⁺] _i Measurements Using Novel Cleft-Targeted Ca ²⁺ Sensors. Circulation Research, 2014, 115, 339-347.	4.5	44
245	Bay K 8644 Increases Resting Ca ²⁺ Spark Frequency in Ferret Ventricular Myocytes Independent of Ca Influx. Circulation Research, 1998, 83, 1192-1204.	4.5	43
246	Chronic SR Ca 2+ -ATPase Inhibition Causes Adaptive Changes in Cellular Ca 2+ Transport. Circulation Research, 2003, 92, 769-776.	4.5	43
247	Na/K Pump-Induced [Na]i Gradients in Rat Ventricular Myocytes Measured with Two-Photon Microscopy. Biophysical Journal, 2004, 87, 1360-1368.	0.5	43
248	Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure. Circulation Research, 2016, 119, 931-943.	4.5	43
249	Hyperglycemia regulates cardiac K+ channels via O-GlcNAc-CaMKII and NOX2-ROS-PKC pathways. Basic Research in Cardiology, 2020, 115, 71.	5.9	43
250	Diffusion around a cardiac calcium channel and the role of surface bound calcium. Biophysical Journal, 1991, 59, 703-721.	0.5	42
251	Dynamic changes in free Ca-calmodulin levels in adult cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2006, 41, 451-458.	1.9	42
252	Nonequilibrium Reactivation of Na + Current Drives Early Afterdepolarizations in Mouse Ventricle. Circulation: Arrhythmia and Electrophysiology, 2014, 7, 1205-1213.	4.8	42

#	Article	IF	CITATIONS
253	Frequency-dependent Changes in Contribution of SR Ca2+to Ca2+Transients in Failing Human Myocardium Assessed with Ryanodine. Journal of Molecular and Cellular Cardiology, 1998, 30, 1285-1294.	1.9	41
254	Ca2+-calmodulin-dependent protein kinase II regulation of cardiac excitation-transcription coupling. Heart Rhythm, 2011, 8, 1101-1104.	0.7	41
255	Nitric oxide regulates cardiac intracellular Na+ and Ca2+ by modulating Na/K ATPase via PKCε and phospholemman-dependent mechanism. Journal of Molecular and Cellular Cardiology, 2013, 61, 164-171.	1.9	41
256	Extracellular potassium dependence of the Na ⁺ -K ⁺ -ATPase in cardiac myocytes: isoform specificity and effect of phospholemman. American Journal of Physiology - Cell Physiology, 2009, 297, C699-C705.	4.6	40
257	Whole-Cell cAMP and PKA Activity are Epiphenomena, Nanodomain Signaling Matters. Physiology, 2019, 34, 240-249.	3.1	40
258	Phospholamban Decreases the Energetic Efficiency of the Sarcoplasmic Reticulum Ca Pump. Journal of Biological Chemistry, 2001, 276, 7195-7201.	3.4	38
259	Spatiotemporally Distinct Protein Kinase D Activation in Adult Cardiomyocytes in Response to Phenylephrine and Endothelin. Journal of Biological Chemistry, 2011, 286, 33390-33400.	3.4	38
260	Intracellular β ₁ -Adrenergic Receptors and Organic Cation Transporter 3 Mediate Phospholamban Phosphorylation to Enhance Cardiac Contractility. Circulation Research, 2021, 128, 246-261.	4.5	38
261	CaMKII Serine 280 O-GlcNAcylation Links Diabetic Hyperglycemia to Proarrhythmia. Circulation Research, 2021, 129, 98-113.	4.5	38
262	Sarcoplasmic reticulum Ca release in intact ventricular myocytes. Frontiers in Bioscience - Landmark, 2002, 7, d1697-1711.	3.0	38
263	Pentameric Assembly of Phospholamban Facilitates Inhibition of Cardiac Function in Vivo. Journal of Biological Chemistry, 1998, 273, 33674-33680.	3.4	37
264	Differential Integration of Ca2+-Calmodulin Signal in Intact Ventricular Myocytes at Low and High Affinity Ca2+-Calmodulin Targets. Journal of Biological Chemistry, 2008, 283, 31531-31540.	3.4	37
265	Cardiac Na ⁺ –Ca ²⁺ exchanger: dynamics of Ca ²⁺ â€dependent activation and deactivation in intact myocytes. Journal of Physiology, 2013, 591, 2067-2086.	2.9	37
266	Quantitative analysis of the Ca ²⁺ â€dependent regulation of delayed rectifier K ⁺ current <i>I</i> _{Ks} in rabbit ventricular myocytes. Journal of Physiology, 2017, 595, 2253-2268.	2.9	37
267	Cardiac Excitation–Contraction Coupling. , 2013, , 379-383.		36
268	CaMKII Phosphorylation of Na _V 1.5: Novel in Vitro Sites Identified by Mass Spectrometry and Reduced S516 Phosphorylation in Human Heart Failure. Journal of Proteome Research, 2015, 14, 2298-2311.	3.7	36
269	Cardiac-specific Conditional Knockout of the 18-kDa Mitochondrial Translocator Protein Protects from Pressure Overload Induced Heart Failure. Scientific Reports, 2018, 8, 16213.	3.3	36
270	MCUb Induction Protects the Heart From Postischemic Remodeling. Circulation Research, 2020, 127, 379-390.	4.5	36

#	Article	IF	CITATIONS
271	FRET Detection of Calmodulin Binding to the Cardiac RyR2 Calcium Release Channel. Biophysical Journal, 2011, 101, 2170-2177.	0.5	35
272	In Cardiomyocytes, Binding of Unzipping Peptide Activates Ryanodine Receptor 2 and Reciprocally Inhibits Calmodulin Binding. Circulation Research, 2013, 112, 487-497.	4.5	35
273	The late sodium current in heart failure: pathophysiology and clinical relevance. ESC Heart Failure, 2014, 1, 26-40.	3.1	35
274	Control of histone <scp>H3</scp> phosphorylation by <scp>CaMKII</scp> δ in response to haemodynamic cardiac stress. Journal of Pathology, 2015, 235, 606-618.	4.5	35
275	Quantitative analysis of regional variability in the distribution of transverse tubules in rabbit myocardium. Cell and Tissue Research, 1991, 264, 293-298.	2.9	34
276	Intra–Sarcoplasmic Reticulum Free [Ca ²⁺] and Buffering in Arrhythmogenic Failing Rabbit Heart. Circulation Research, 2007, 101, 802-810.	4.5	34
277	Regulatory Role of Phospholamban in the Efficiency of Cardiac Sarcoplasmic Reticulum Ca2+Transportâ€. Biochemistry, 2000, 39, 14176-14182.	2.5	33
278	Na ⁺ transport in cardiac myocytes; Implications for excitation ontraction coupling. IUBMB Life, 2009, 61, 215-221.	3.4	33
279	Interplay of voltage and Ca-dependent inactivation of L-type Ca current. Progress in Biophysics and Molecular Biology, 2010, 103, 44-50.	2.9	33
280	Nuclear Calcium in Cardiac Myocytes. Journal of Cardiovascular Pharmacology, 2015, 65, 211-217.	1.9	33
281	Decreased inward rectifying K ⁺ current and increased ryanodine receptor sensitivity synergistically contribute to sustained focal arrhythmia in the intact rabbit heart. Journal of Physiology, 2015, 593, 1479-1493.	2.9	33
282	Cardiomyocyte Na+ and Ca2+ mishandling drives vicious cycle involving CaMKII, ROS, and ryanodine receptors. Basic Research in Cardiology, 2021, 116, 58.	5.9	33
283	Arrhythmogenic Transient Dynamics in Cardiac Myocytes. Biophysical Journal, 2014, 106, 1391-1397.	0.5	32
284	Disease-associated mutations in Niemann-Pick type C1 alter ER calcium signaling and neuronal plasticity. Journal of Cell Biology, 2019, 218, 4141-4156.	5.2	32
285	Intrafibrillar and perinuclear mitochondrial heterogeneity in adult cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2019, 136, 72-84.	1.9	32
286	Factors That Control Sarcoplasmic Reticulum Calcium Release in Intact Ventricular Myocytesa. Annals of the New York Academy of Sciences, 1998, 853, 157-177.	3.8	31
287	Passive Ca2+ binding in ventricular myocardium of neonatal and adult rats. Cell Calcium, 1998, 23, 433-442.	2.4	31
288	Effects of left ventricular hypertrophy on force and Ca ²⁺ handling in isolated rat myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H1361-H1370.	3.2	31

#	Article	IF	CITATIONS
289	Subcellular properties of [Ca2+]itransients in phospholamban-deficient mouse ventricular cells. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H1800-H1811.	3.2	31
290	Adenoviral Gene Transfer of Mutant Phospholamban Rescues Contractile Dysfunction in Failing Rabbit Myocytes With Relatively Preserved SERCA Function. Circulation Research, 2005, 96, 815-817.	4.5	31
291	Isoform- and tissue-specific regulation of the Ca ²⁺ -sensitive transcription factor NFAT in cardiac myocytes and heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H2001-H2009.	3.2	31
292	Slow [Na] _i Changes and Positive Feedback Between Membrane Potential and [Ca] _i Underlie Intermittent Early Afterdepolarizations and Arrhythmias. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1472-1480.	4.8	31
293	Size Matters: Ryanodine Receptor Cluster Size Heterogeneity Potentiates Calcium Waves. Biophysical Journal, 2019, 116, 530-539.	0.5	31
294	Diabetic microcirculatory disturbances and pathologic erythropoiesis are provoked by deposition of amyloid-forming amylin in red blood cells and capillaries. Kidney International, 2020, 97, 143-155.	5.2	31
295	CaMKIIδC Drives Early Adaptive Ca 2+ Change and Late Eccentric Cardiac Hypertrophy. Circulation Research, 2020, 127, 1159-1178.	4.5	31
296	Calmodulin and Ca2+/calmodulin kinases in the heart – Physiology and pathophysiology. Cardiovascular Research, 2007, 73, 629-630.	3.8	30
297	Impaired contractile function and calcium handling in hearts of cardiac-specific calcineurin b1-deficient mice. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1263-H1273.	3.2	30
298	Altered Repolarization Reserve in Failing Rabbit Ventricular Myocytes. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e005852.	4.8	30
299	Mechanoâ€electric and mechanoâ€chemoâ€transduction in cardiomyocytes. Journal of Physiology, 2020, 598, 1285-1305.	2.9	30
300	RyR1-targeted drug discovery pipeline integrating FRET-based high-throughput screening and human myofiber dynamic Ca2+ assays. Scientific Reports, 2020, 10, 1791.	3.3	30
301	Regulation of Mitochondrial [NADH] by Cytosolic [Ca ²⁺] and Work in Trabeculae From Hypertrophic and Normal Rat Hearts. Circulation Research, 1998, 82, 1189-1198.	4.5	29
302	Role of phospholemman phosphorylation sites in mediating kinase-dependent regulation of the Na ⁺ -K ⁺ -ATPase. American Journal of Physiology - Cell Physiology, 2010, 299, C1363-C1369.	4.6	29
303	Phosphomimetic Mutations Enhance Oligomerization of Phospholemman and Modulate Its Interaction with the Na/K-ATPase. Journal of Biological Chemistry, 2011, 286, 9120-9126.	3.4	29
304	Enhanced Depolarization Drive in Failing Rabbit Ventricular Myocytes. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007061.	4.8	29
305	Modelling calcium microdomains using homogenisation. Journal of Theoretical Biology, 2007, 247, 623-644.	1.7	28
306	Rabbit models of heart disease. Drug Discovery Today: Disease Models, 2008, 5, 185-193.	1.2	28

#	Article	IF	CITATIONS
307	CaMKIIδC Slows [Ca]i Decline in Cardiac Myocytes by Promoting Ca Sparks. Biophysical Journal, 2012, 102, 2461-2470.	0.5	28
308	JNK2, a Newly-Identified SERCA2 Enhancer, Augments an Arrhythmic [Ca ²⁺] _{SR} Leak-Load Relationship. Circulation Research, 2021, 128, 455-470.	4.5	28
309	Targeted ablation of the histidine-rich Ca2+-binding protein (HRC) gene is associated with abnormal SR Ca2+-cycling and severe pathology under pressure-overload stress. Basic Research in Cardiology, 2013, 108, 344.	5.9	27
310	S100A1 Protein Does Not Compete with Calmodulin for Ryanodine Receptor Binding but Structurally Alters the Ryanodine ReceptorA·Calmodulin Complex. Journal of Biological Chemistry, 2016, 291, 15896-15907.	3.4	27
311	Dynamical effects of calciumâ€sensitive potassium currents on voltage and calcium alternans. Journal of Physiology, 2017, 595, 2285-2297.	2.9	27
312	Dual role of inorganic polyphosphate in cardiac myocytes: The importance of polyP chain length for energy metabolism and mPTP activation. Archives of Biochemistry and Biophysics, 2019, 662, 177-189.	3.0	27
313	AKAP18δAnchors and Regulates CaMKII Activity at Phospholamban-SERCA2 and RYR. Circulation Research, 2022, 130, 27-44.	4.5	27
314	Empagliflozin Reverses Late Na ⁺ Current Enhancement and Cardiomyocyte Proarrhythmia in a Translational Murine Model of Heart Failure With Preserved Ejection Fraction. Circulation, 2022, 145, 1029-1031.	1.6	27
315	Temperature-dependent Activation of Neurons by Continuous Near-infrared Laser. Cell Biochemistry and Biophysics, 2009, 53, 33-42.	1.8	26
316	Two-hit mechanism of cardiac arrhythmias in diabetic hyperglycaemia: reduced repolarization reserve, neurohormonal stimulation, and heart failure exacerbate susceptibility. Cardiovascular Research, 2021, 117, 2781-2793.	3.8	26
317	Sex differences in repolarization and slow delayed rectifier potassium current and their regulation by sympathetic stimulation in rabbits. Pflugers Archiv European Journal of Physiology, 2013, 465, 805-818.	2.8	25
318	Calcium at the surface of cardiac plasma membrane vesicles: Cation binding, surface charge screening, and Naâ^'Ca exchange. Journal of Membrane Biology, 1985, 85, 251-261.	2.1	24
319	Sodium and the heart: a hidden key factor in cardiac regulation. Cardiovascular Research, 2003, 57, 871-872.	3.8	24
320	Na/Ca Exchange Function in Intact Ventricular Myocytes. Annals of the New York Academy of Sciences, 2002, 976, 500-512.	3.8	24
321	Going to cAMP just got more complicated. Journal of Physiology, 2007, 583, 415-416.	2.9	24
322	CaMKII Inhibition in Heart Failure Makes Jump to Human. Circulation Research, 2010, 107, 1044-1046.	4.5	24
323	Importance of small heat shock protein 20 (hsp20) C-terminal extension in cardioprotection. Journal of Molecular and Cellular Cardiology, 2007, 42, 862-869.	1.9	23
324	Dynamics of sodium current mediated early afterdepolarizations. Heliyon, 2017, 3, e00388.	3.2	23

#	Article	IF	CITATIONS
325	Effect of intracellular Ca2+ and action potential duration on L-type Ca2+ channel inactivation and recovery from inactivation in rabbit cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H563-H573.	3.2	22
326	Human Atrial Fibrillation: Insights From Computational Electrophysiological Models. Trends in Cardiovascular Medicine, 2011, 21, 145-150.	4.9	22
327	Cardiac CaMKII activation promotes rapid translocation to its extra-dyadic targets. Journal of Molecular and Cellular Cardiology, 2018, 125, 18-28.	1.9	22
328	Different paths, same destination: divergent action potential responses produce conserved cardiac fightâ€orâ€flight response in mouse and rabbit hearts. Journal of Physiology, 2019, 597, 3867-3883.	2.9	22
329	Quantitative cross-species translators of cardiac myocyte electrophysiology: Model training, experimental validation, and applications. Science Advances, 2021, 7, eabg0927.	10.3	22
330	SR-targeted CaMKII inhibition improves SR Ca2+ handling, but accelerates cardiac remodeling in mice overexpressing CaMKIII ´C. Journal of Molecular and Cellular Cardiology, 2011, 50, 230-238.	1.9	21
331	While systolic cardiomyocyte function is preserved, diastolic myocyte function and recovery from acidosis are impaired in CaMKIIĨ-KO mice. Journal of Molecular and Cellular Cardiology, 2013, 59, 107-116.	1.9	21
332	Visualizing CaMKII and CaM activity: a paradigm of compartmentalized signaling. Journal of Molecular Medicine, 2013, 91, 907-916.	3.9	21
333	How does β-adrenergic signalling affect the transitions from ventricular tachycardia to ventricular fibrillation?. Europace, 2014, 16, 452-457.	1.7	21
334	Cardiac pacemaking: If vs. Ca2+, is it really that simple?. Journal of Molecular and Cellular Cardiology, 2003, 35, 891-893.	1.9	20
335	Beyond beta blockers. Nature Medicine, 2005, 11, 379-380.	30.7	20
336	αâ€Actininâ€1 promotes activity of the Lâ€ŧype Ca ²⁺ channel Ca _v 1.2. EMBO Journal, 2020, 39, e102622.	' 7.8	20
337	Inositol Trisphosphate Receptors and Nuclear Calcium in Atrial Fibrillation. Circulation Research, 2021, 128, 619-635.	4.5	20
338	Ca 2+ influx via the Lâ€ŧype Ca 2+ channel during tail current and above current reversal potential in ferret ventricular myocytes. Journal of Physiology, 2000, 523, 57-66.	2.9	19
339	Targeted inhibition of sarcoplasmic reticulum CaMKII activity results in alterations of Ca2+ homeostasis and cardiac contractility. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H599-H606.	3.2	19
340	Ketone Ester Dâ€Î²â€Hydroxybutyrateâ€(R)â€1,3 Butanediol Prevents Decline in Cardiac Function in Type 2 Diabetic Mice. Journal of the American Heart Association, 2021, 10, e020729.	3.7	19
341	A cardiac dihydropyridine receptor IIâ€III loop peptide inhibits resting Ca 2+ sparks in ferret ventricular myocytes. Journal of Physiology, 2001, 537, 17-26.	2.9	18
342	Depolarization of Cardiac Membrane Potential Synchronizes Calcium Sparks and Waves in Tissue. Biophysical Journal, 2014, 107, 1313-1317.	0.5	18

#	Article	IF	CITATIONS
343	Cardiac myocyte alternans in intact heart: Influence of cell–cell coupling and β-adrenergic stimulation. Journal of Molecular and Cellular Cardiology, 2015, 84, 1-9.	1.9	18
344	Sarcoplasmic Reticulum Structure and Functional Properties that Promote Long-Lasting Calcium Sparks. Biophysical Journal, 2016, 110, 382-390.	0.5	18
345	Phorbol ester and endothelin-1 alter functional expression of Na+/Ca2+ exchange, K+, and Ca2+ currents in cultured neonatal rat myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H617-H626.	3.2	17
346	Can the Sodium-Calcium Exchanger Initiate or Suppress Calcium Sparks in Cardiac Myocytes?. Biophysical Journal, 2012, 102, L31-L33.	0.5	17
347	The force-frequency relationship: insights from mathematical modeling. American Journal of Physiology - Advances in Physiology Education, 2013, 37, 28-34.	1.6	17
348	Nuclear Calcium/Calmodulin-dependent Protein Kinase II Signaling Enhances Cardiac Progenitor Cell Survival and Cardiac Lineage Commitment. Journal of Biological Chemistry, 2015, 290, 25411-25426.	3.4	17
349	Increasing SERCA function promotes initiation of calcium sparks and breakup of calcium waves. Journal of Physiology, 2021, 599, 3267-3278.	2.9	17
350	The Beat Goes On. Circulation Research, 2006, 99, 921-923.	4.5	16
351	Modulation of Contractility in Failing Human Myocytes by Reverseâ€Mode Na/Ca Exchange. Annals of the New York Academy of Sciences, 2002, 976, 466-471.	3.8	16
352	Calcium Influx via I _{NCX} Is Favored in Failing Human Ventricular Myocytes. Annals of the New York Academy of Sciences, 2002, 976, 478-479.	3.8	16
353	FRET-Based Trilateration of Probes Bound within Functional Ryanodine Receptors. Biophysical Journal, 2014, 107, 2037-2048.	0.5	16
354	Balance Between Rapid Delayed Rectifier K ⁺ Current and Late Na ⁺ Current on Ventricular Repolarization. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e008130.	4.8	16
355	Making and Using Calcium-Selective Mini- and Microelectrodes. Methods in Cell Biology, 2010, 99, 67-89.	1.1	15
356	Na+/K+-ATPase E960 and phospholemman F28 are critical for their functional interaction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20756-20761.	7.1	15
357	Reduced Arrhythmia Inducibility With Calcium/Calmodulin-dependent Protein Kinase II Inhibition in Heart Failure Rabbits. Journal of Cardiovascular Pharmacology, 2016, 67, 260-265.	1.9	15
358	Calcium-Dependent Arrhythmogenic Foci Created by Weakly Coupled Myocytes in the Failing Heart. Circulation Research, 2017, 121, 1379-1391.	4.5	15
359	Nuclear translocation of calmodulin in pathological cardiac hypertrophy originates from ryanodine receptor bound calmodulin. Journal of Molecular and Cellular Cardiology, 2018, 125, 87-97.	1.9	15
360	CaMKII and PKA-dependent phosphorylation co-regulate nuclear localization of HDAC4 in adult cardiomyocytes. Basic Research in Cardiology, 2021, 116, 11.	5.9	15

#	Article	IF	CITATIONS
361	Role of Reduced Sarco-Endoplasmic Reticulum Ca2+-ATPase Function on Sarcoplasmic Reticulum Ca2+ Alternans in the Intact Rabbit Heart. Frontiers in Physiology, 2021, 12, 656516.	2.8	15
362	Contractile Activity Modulates Atrial Natriuretic Factor Gene Expression in Neonatal Rat Ventricular Myocytes. Journal of Molecular and Cellular Cardiology, 1998, 30, 55-60.	1.9	14
363	Time course of action of antagonists of mitochondrial Ca uptake in intact ventricular myocytes. Pflugers Archiv European Journal of Physiology, 2002, 445, 132-138.	2.8	14
364	A simple device to illustrate the Einthoven triangle. American Journal of Physiology - Advances in Physiology Education, 2012, 36, 319-324.	1.6	14
365	Mechanoelectric coupling and arrhythmogenesis in cardiomyocytes contracting under mechanical afterload in a 3D viscoelastic hydrogel. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2108484118.	7.1	14
366	Sarcoplasmic reticulum Ca release in intact ventricular myocytes. Frontiers in Bioscience - Landmark, 2002, 7, d1697.	3.0	13
367	Mitochondria: From basic biology to cardiovascular disease. Journal of Molecular and Cellular Cardiology, 2009, 46, 765-766.	1.9	13
368	To the rescue of the failing heart. Nature, 2011, 473, 37-39.	27.8	13
369	Monoamine Oxidases Desensitize Intracellular β ₁ AR Signaling in Heart Failure. Circulation Research, 2021, 129, 965-967.	4.5	13
370	Subcellular localization of Na/K-ATPase isoforms in ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2017, 108, 158-169.	1.9	12
371	Stabilizing ryanodine receptor gating quiets arrhythmogenic events in human heart failure and atrial fibrillation. Heart Rhythm, 2017, 14, 420-421.	0.7	12
372	Cardiotoxicity of environmental contaminant tributyltin involves myocyte oxidative stress and abnormal Ca2+ handling. Environmental Pollution, 2019, 247, 371-382.	7.5	12
373	Digitalis and Na/Ca exchange: Old dog learns new mitochondrial tricks. Journal of Molecular and Cellular Cardiology, 2010, 49, 713-714.	1.9	11
374	Membrane Receptor Neighborhoods. Circulation Research, 2013, 112, 224-226.	4.5	11
375	Amylin and diabetic cardiomyopathy – amylin-induced sarcolemmal Ca2+ leak is independent of diabetic remodeling of myocardium. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1923-1930.	3.8	11
376	Loss of CASK Accelerates Heart Failure Development. Circulation Research, 2021, 128, 1139-1155.	4.5	11
377	Sodium and calcium regulation in cardiac myocytes: from molecules to heart failure and arrhythmia. Journal of Physiology, 2015, 593, 1327-1329.	2.9	10
378	Reverse Mode of the Sarcoplasmic Reticulum Ca Pump Limits Sarcoplasmic Reticulum Ca Uptake in Permeabilized and Voltage-Clamped Myocytes. Annals of the New York Academy of Sciences, 1998, 853, 350-352.	3.8	9

#	Article	IF	CITATIONS
379	Phospholamban overexpression in rabbit ventricular myocytes does not alter sarcoplasmic reticulum Ca transport. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H698-H703.	3.2	9
380	Mechanical Load Regulates Excitation-Ca ²⁺ Signaling-Contraction in Cardiomyocyte. Circulation Research, 2021, 128, 772-774.	4.5	9
381	Major Cellular Structures Involved in Excitation-Contraction Coupling. Developments in Cardiovascular Medicine, 2001, , 1-18.	0.1	9
382	Synergistic FRET assays for drug discovery targeting RyR2 channels. Journal of Molecular and Cellular Cardiology, 2022, 168, 13-23.	1.9	9
383	Influence of a constitutive increase in myofilament Ca2+-sensitivity on Ca2+-fluxes and contraction of mouse heart ventricular myocytes. Archives of Biochemistry and Biophysics, 2014, 552-553, 50-59.	3.0	8
384	CaMKII comes of age in cardiac health and disease. Frontiers in Pharmacology, 2014, 5, 154.	3.5	7
385	Dynamic Imaging in Living Cells: Windows into Local Signaling. Science Signaling, 2003, 2003, pe13-pe13.	3.6	6
386	Human Biological Pacemakers. Circulation, 2012, 125, 856-858.	1.6	6
387	Endurance training restores spatially distinct cardiac mitochondrial function and myocardial contractility in ovariectomized rats. Free Radical Biology and Medicine, 2019, 130, 174-188.	2.9	6
388	Subcellular Propagation of Cardiomyocyte β-Adrenergic Activation of Calcium Uptake Involves Internal β-Receptors and AKAP7. Function, 2022, 3, .	2.3	6
389	L30A Mutation of Phospholemman Mimics Effects of Cardiac Glycosides in Isolated Cardiomyocytes. Biochemistry, 2016, 55, 6196-6204.	2.5	5
390	Stretch-Activated Current Can Promote or Suppress Cardiac Alternans Depending on Voltage-Calcium Interaction. Biophysical Journal, 2016, 110, 2671-2677.	0.5	5
391	Excitation–Contraction Coupling. , 2018, , 151-159.		5
392	Diabetic Hyperglycemia Regulates Potassium Channels and Arrhythmias in the Heart via Autonomous CaMKII Activation by O-Linked Glycosylation. Biophysical Journal, 2019, 116, 98a.	0.5	5
393	Measuring Intranuclear and Nuclear Envelope [Ca2+] vs. Cytosolic [Ca2+]. Methods in Molecular Biology, 2015, 1234, 135-147.	0.9	5
394	Excitation-Contraction Coupling. Developments in Cardiovascular Medicine, 1993, , 119-148.	0.1	5
395	Simultaneous Measurement of [Na] _i , [Ca] _i , and I _{NCX} in Intact Cardiac Myocytes. Annals of the New York Academy of Sciences, 2002, 976, 157-158.	3.8	4
396	Na + Channel I–II Loop Mediates Parallel Genetic and Phosphorylation-Dependent Gating Changes. Circulation, 2012, 126, 2042-2046.	1.6	4

#	Article	IF	CITATIONS
397	Calcium-Sensitive Mini- and Microelectrodes. Cold Spring Harbor Protocols, 2013, 2013, pdb.top066290-pdb.top066290.	0.3	4
398	CALM ing Down Arrhythmogenic Calmodulinopathies via a Precision Medicine Approach. Circulation Research, 2017, 120, 3-4.	4.5	4
399	MarkoLAB: A simulator to study ionic channel's stochastic behavior. Computers in Biology and Medicine, 2017, 87, 258-270.	7.0	4
400	CaMKIIδ post-translational modifications increase affinity for calmodulin inside cardiac ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2021, 161, 53-61.	1.9	4
401	Beat-to-beat dynamic regulation of intracellular pH in cardiomyocytes. IScience, 2022, 25, 103624.	4.1	4
402	Confocal imaging of CICR events from isolated and immobilized SR vesicles. Cell Calcium, 2005, 38, 497-505.	2.4	3
403	Isoproterenol-Enhanced Diastolic Sarcoplasmic Reticulum Ca Leak in Ventricular Myocytes Requires Activation of Nitric Oxide Synthase. Biophysical Journal, 2009, 96, 120a-121a.	0.5	3
404	Models of the Ventricular Action Potential in Health and Disease. , 2014, , 319-330.		3
405	Na/Ca Exchange and the Sarcolemmal Ca-Pump. Developments in Cardiovascular Medicine, 1993, , 71-92.	0.1	3
406	Cardiac Inotropy and Ca Overload. Developments in Cardiovascular Medicine, 1993, , 171-204.	0.1	3
407	Junctional Cleft [Ca]i Measurements using Novel Cleft-Targeted Ca Sensors. Biophysical Journal, 2012, 102, 408a.	0.5	2
408	Adrenergic Fight-or-Flight. Circulation Research, 2015, 117, 747-749.	4.5	2
409	PK11195 Protects From Cell Death Only When Applied During Reperfusion: Succinate-Mediated Mechanism of Action. Frontiers in Physiology, 2021, 12, 628508.	2.8	2
410	Ca transport during contraction and relaxation in mammalian ventricular muscle. , 1998, , 1-16.		2
411	Possible Sources and Sinks of Activator Calcium. Developments in Cardiovascular Medicine, 1993, , 33-48.	0.1	2
412	Sarcoplasmic Reticulum Ca Uptake, Content and Release. Developments in Cardiovascular Medicine, 1993, , 93-118.	0.1	2
413	Cardiac ryanodine receptor N-terminal region biosensors identify novel inhibitors via FRET-based high-throughput screening. Journal of Biological Chemistry, 2022, 298, 101412.	3.4	2
414	Sudden Unexpected Death. Comprehensive Therapy, 2005, 31, 176-180.	0.2	1

#	Article	IF	CITATIONS
415	Calcium Channels Are Ganging Up in the Sarcolemma. Circulation Research, 2010, 106, 625-626.	4.5	1
416	Minding the store of Ca2+ during ischaemia/reperfusion. Cardiovascular Research, 2010, 85, 641-642.	3.8	1
417	Cytosolic Ca-Dependent Na/Ca Exchange Regulation in Intact Cardiomyocytes: Role of Cytosolic Na. Biophysical Journal, 2010, 98, 21a-22a.	0.5	1
418	An Improved Model of Voltage- and Ca-Dependent Inactivation of the L-Type Ca Channels. Biophysical Journal, 2011, 100, 571a.	0.5	1
419	In Situ Measurement of RyR2-Calmodulin Binding in Permeabilized Cardiomyocytes. Biophysical Journal, 2011, 100, 413a-414a.	0.5	1
420	How to Make Calcium-Sensitive Minielectrodes. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot072850-pdb.prot072850.	0.3	1
421	Excitation-Contraction Coupling. , 2014, , 161-169.		1
422	K ⁺ channels and cardiac electrophysiology. Journal of Physiology, 2017, 595, 2205-2207.	2.9	1
423	Ketone Bodies and their Polymers in Heart Failure and Type 2 Diabetes: Lessons Learned from the Ketone Ester Diet. Biophysical Journal, 2019, 116, 2a-3a.	0.5	1
424	Mechanics and energetics in cardiac arrhythmias and heart failure. Journal of Physiology, 2020, 598, 1275-1277.	2.9	1
425	Cardiac Calcium Channels. , 2004, , 10-18.		1
426	Abstract 802: Dynamic FRET-Based Ca-Calmodulin Measurements in Intact Ventricular Myocytes Uncover Differential Signal Integration Due to Ca-Calmodulin Affinity. Circulation, 2007, 116, .	1.6	1
427	Akt regulates L-type Ca2+channel activity by modulating Cavα1 protein stability. Journal of General Physiology, 2009, 133, i4-i4.	1.9	1
428	Ca Influx Via Sarcolemmal Ca Channels. Developments in Cardiovascular Medicine, 1993, , 49-69.	0.1	1
429	Neuron-Restrictive Silencer Factor Limits Myocyte Gα O Expression and Is Protective in Heart Failure Progression. Circulation Research, 2022, 130, 249-251.	4.5	1
430	Inotropic Mechanisms in Cardiac Muscle. , 2001, , 779-788.		0
431	Pulmonary Arterial Hypertension. Comprehensive Therapy, 2007, 33, 231-236.	0.2	0
432	Point/Counterpoint: A new feature in the JMCC. Journal of Molecular and Cellular Cardiology, 2008, 44, 949.	1.9	0

#	Article	IF	CITATIONS
433	Na diffusion dependent Ca handling in rabbit ventricular myocytes. , 2008, , .		0
434	lapp Preamyloid Oligomers Accumulate in the Heart and Contribute to Cardiac Dysfunction in Type-2 Diabetes. Biophysical Journal, 2010, 98, 255a.	0.5	0
435	Mapping the Site of RyR2 "Unzipping―Peptide (DPc10) by using Fluorescence Resonance Energy Transfer (FRET) in Permeabilized Cardiomyocytes. Biophysical Journal, 2012, 102, 306a.	0.5	0
436	Feed Forward Modeling. Fixing the Force Frequency Relationship. Biophysical Journal, 2012, 102, 552a-553a.	0.5	0
437	Contribution of Calcium Waves to the Regulation of Beating Rhythm in Sinoatrial Node Cells. Biophysical Journal, 2012, 102, 673a.	0.5	0
438	Calcium Fluxes and Homeostasis. , 2012, , 141-152.		0
439	The PLM Homotetramer has a Structural Basis that Parallels that of PLB: The Leucine Zipper. Biophysical Journal, 2013, 104, 407a.	0.5	0
440	Depolarization of Cardiac Membrane Potential Promotes Calcium Waves. Biophysical Journal, 2014, 106, 531a.	0.5	0
441	Advancing cardiac safety with a "thorough preclinical QT Study―using low-impedance microelectrode arrays and human stem cell-derived cardiomyocytes. Journal of Pharmacological and Toxicological Methods, 2014, 70, 354.	0.7	0
442	CaMKII-Dependent Phosphorylation of RyR2 Causes Domain Unzipping and Reduced Calmodulin Binding, But Dantrolene Reverses These Effects. Biophysical Journal, 2015, 108, 269a-270a.	0.5	0
443	Mechano-Chemo-Transduction in Rabbit Cardiomyocytes Mediated by no Signaling. Biophysical Journal, 2016, 110, 600a.	0.5	0
444	Tributytin Induces Negative Inotropic Effect, Reduces Cardiac SR Calcium Content and Increases Calcium Sparks Frequency in Cardiomyocytes. Biophysical Journal, 2018, 114, 501a.	0.5	0
445	Role of Epac2 in High Glucose-Induced SR Ca2+ Leak and Arrhythmia. Biophysical Journal, 2018, 114, 618a.	0.5	0
446	Quantitative In Silico Analysis of the Arrhythmogenic CaMKII-Sodium-Calcium-CaMKII Feedback in the Failing Rabbit Ventricular Myocyte. Biophysical Journal, 2019, 116, 94a-95a.	0.5	0
447	FRET-Based Trilateration Resolves Distinct Structural States and Transitions of Calmodulin Bound to RyR. Biophysical Journal, 2019, 116, 43a.	0.5	0
448	Beta-Adrenergic Signaling in Isolated Cardiomyocytes Propagates Spatially Over Time. Biophysical Journal, 2020, 118, 328a-329a.	0.5	0
449	Mitochondrial Translocator Protein (TSPO) Prevents Heart Failure by Increasing Cardiac Utilization of Fatty Acids. Biophysical Journal, 2020, 118, 445a-446a.	0.5	0
450	Dynamic Regulation of Intracellular PH in the Heart. Biophysical Journal, 2021, 120, 103a.	0.5	0

#	Article	IF	CITATIONS
451	Cardiac Na/Ca Exchange Suppression: A Lateâ€Breaking Knockout Story Showing That There Is No Free Lunch. Journal of the American Heart Association, 2021, 10, e022512.	3.7	0
452	Phospholamban Ablation Rescues SR Ca2+ Loading But Not Cardiac Function In CaMKIIλC Transgenic Mice. FASEB Journal, 2006, 20, A1124.	0.5	0
453	Measurement of Calcium Flux and Intracellular Sodium by Ion-Selective Microelectrodes. Methods in Neurosciences, 1991, 4, 278-300.	0.5	0
454	Ca transport from the cytoplasm and dynamic cellular Ca balance in cardiac myocytes. Developments in Cardiovascular Medicine, 1996, , 541-551.	0.1	0
455	Regulation of SR Calcium Release in Intact Ventricular Myocytes. , 1998, , 291-318.		0
456	Correlative superâ€resolution light microscopy and electron microscopy determines spatial Ryanodine receptor type 2 distribution in mouse ventricular myocytes (LB707). FASEB Journal, 2014, 28, LB707.	0.5	0
457	Dual optical mapping of the innervated Langendorff-perfused heart reveals novel insights into acute electrophysiological responses to sympathetic stimulation. Journal of Molecular and Cellular Cardiology, 2017, 112, 151-152.	1.9	0
458	Computer Simulation of Altered Sodium Channel Gating in Rabbit and HumanVentricular Myocytes. , 2007, , 120-128.		0
459	Functional remodeling of perinuclear mitochondria alters nucleoplasmic Ca2+signaling in heart failure. Biophysical Journal, 2022, 121, 509a-510a.	0.5	0
460	Initiation and maintenance of arrhythmogenic action potential waves near the infarct zone in heart failure. Biophysical Journal, 2022, 121, 89a-90a.	0.5	0
461	Initiation of calcium waves in failing cardiac myocytes is sensitive to posttranslational modifications. Biophysical Journal, 2022, 121, 377a-378a.	0.5	0
462	Fixing a current problem in the cardiac Na channel. , 2022, 1, 408-409.		0
463	Functional remodeling of perinuclear mitochondria alters nucleoplasmic Ca2+ signaling in heart failure. Cardiovascular Research, 2022, 118, .	3.8	0