List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3466189/publications.pdf Version: 2024-02-01

VELLK TODKADA

#	Article	IF	CITATIONS
1	The Variety of Cardiovascular Presentations of COVID-19. Circulation, 2020, 141, 1930-1936.	1.6	465
2	Right Heart Failure After Left Ventricular Assist Device Implantation in Patients With Chronic Congestive Heart Failure. Journal of Heart and Lung Transplantation, 2006, 25, 1-6.	0.6	451
3	Deep RNA Sequencing Reveals Dynamic Regulation of Myocardial Noncoding RNAs in Failing Human Heart and Remodeling With Mechanical Circulatory Support. Circulation, 2014, 129, 1009-1021.	1.6	391
4	Infectious Complications in Patients With Left Ventricular Assist Device: Etiology and Outcomes in the Continuous-Flow Era. Annals of Thoracic Surgery, 2010, 90, 1270-1277.	1.3	265
5	Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nature Biomedical Engineering, 2018, 2, 293-303.	22.5	249
6	Incidence and Implications of Left Ventricular Distention During Venoarterial Extracorporeal Membrane Oxygenation Support. ASAIO Journal, 2017, 63, 257-265.	1.6	152
7	Coronary Artery Bypass Grafting in Patients With Low Ejection Fraction. Circulation, 2005, 112, 1344-50.	1.6	135
8	Role of MicroRNAs in Cardiac Remodeling and Heart Failure. Cardiovascular Drugs and Therapy, 2011, 25, 171-182.	2.6	123
9	Myocardial Recovery in Patients Receiving Contemporary Left Ventricular Assist Devices. Circulation: Heart Failure, 2016, 9, .	3.9	106
10	Aortic Insufficiency During Contemporary Left Ventricular Assist Device Support. JACC: Heart Failure, 2018, 6, 951-960.	4.1	106
11	Improved outcomes from extracorporeal membrane oxygenation versus ventricular assist device temporary support of primary graft dysfunction in heart transplant. Journal of Heart and Lung Transplantation, 2017, 36, 650-656.	0.6	88
12	Prognostic Impact of Pulmonary Artery Pulsatility Index (PAPi) in Patients With Advanced Heart Failure: Insights From the ESCAPE Trial. Journal of Cardiac Failure, 2018, 24, 453-459.	1.7	82
13	An Introduction to Small Non-coding RNAs: miRNA and snoRNA. Cardiovascular Drugs and Therapy, 2011, 25, 151-159.	2.6	79
14	Clinical Indication for Use and Outcomes After Inhaled Nitric Oxide Therapy. Annals of Thoracic Surgery, 2006, 82, 2161-2169.	1.3	77
15	Predictors and Outcomes of Continuous Veno-venous Hemodialysis Use After Implantation of a Left Ventricular Assist Device. Journal of Heart and Lung Transplantation, 2006, 25, 404-408.	0.6	76
16	Outcomes after stroke complicating left ventricular assist device. Journal of Heart and Lung Transplantation, 2016, 35, 1003-1009.	0.6	76
17	Left ventricular assist device-related infections: past, present and future. Expert Review of Medical Devices, 2011, 8, 627-634.	2.8	70
18	Early post-operative ventricular arrhythmias in patients with continuous-flow left ventricular assist devices. Journal of Heart and Lung Transplantation, 2015, 34, 1611-1616.	0.6	70

#	Article	IF	CITATIONS
19	A Decade Experience of Cardiac Retransplantation in Adult Recipients. Journal of Heart and Lung Transplantation, 2005, 24, 1745-1750.	0.6	67
20	The Impact of Obesity on Patients BridgedÂto Transplantation With Continuous-Flow LeftÂVentricular AssistÂDevices. JACC: Heart Failure, 2016, 4, 761-768.	4.1	67
21	Sex-Related Differences in Use and Outcomes of Left Ventricular Assist Devices as Bridge to Transplantation. JACC: Heart Failure, 2019, 7, 250-257.	4.1	66
22	Continuous-flow left ventricular assist devices and usefulness of a standardized strategy to reduce drive-line infections. Journal of Heart and Lung Transplantation, 2016, 35, 108-114.	0.6	65
23	Gut microbiota, endotoxemia, inflammation, and oxidative stress in patients with heart failure, left ventricular assist device, and transplant. Journal of Heart and Lung Transplantation, 2020, 39, 880-890.	0.6	65
24	The Unique Blood Pressures and Pulsatility of LVAD Patients: Current Challenges and Future Opportunities. Current Hypertension Reports, 2017, 19, 85.	3.5	61
25	Clinical and hemodynamic effects of intra-aortic balloon pump therapy in chronic heart failure patients with cardiogenic shock. Journal of Heart and Lung Transplantation, 2018, 37, 1313-1321.	0.6	61
26	Socioeconomic Disparities in Adherence and Outcomes After Heart Transplant. Circulation: Heart Failure, 2018, 11, e004173.	3.9	59
27	The Cytoprotective Effects of Tumor Necrosis Factor Are Conveyed Through Tumor Necrosis Factor Receptor–Associated Factor 2 in the Heart. Circulation: Heart Failure, 2010, 3, 157-164.	3.9	58
28	Trends in US Heart Transplant Waitlist Activity and Volume During the Coronavirus Disease 2019 (COVID-19) Pandemic. JAMA Cardiology, 2020, 5, 1048.	6.1	58
29	Left ventricular assist device implantation after acute anterior wall myocardial infarction and cardiogenic shock: A two-center study. Journal of Thoracic and Cardiovascular Surgery, 2005, 130, 693-698.	0.8	56
30	Fatty Acid Synthase Modulates Homeostatic Responses to Myocardial Stress. Journal of Biological Chemistry, 2011, 286, 30949-30961.	3.4	55
31	Discharge to Home Rates Are Significantly Lower for Octogenarians Undergoing Coronary Artery Bypass Graft Surgery. Annals of Thoracic Surgery, 2007, 83, 483-489.	1.3	54
32	EC-VAD: Combined Use of Extracorporeal Membrane Oxygenation and Percutaneous Microaxial Pump Left Ventricular Assist Device. ASAIO Journal, 2019, 65, 219-226.	1.6	50
33	Risk of severe primary graft dysfunction in patients bridged to heart transplantation with continuous-flow left ventricular assist devices. Journal of Heart and Lung Transplantation, 2018, 37, 1433-1442.	0.6	49
34	Impact of Bridge to Transplantation With Continuous-Flow Left Ventricular Assist Devices on Posttransplantation Mortality. Circulation, 2019, 140, 459-469.	1.6	49
35	Clinical outcomes in patients with chronic congestive heart failure who undergo left ventricular assist device implantation. Journal of Thoracic and Cardiovascular Surgery, 2005, 130, 1302-1309.	0.8	48
36	Minimally invasive CentriMag ventricular assist device support integrated with extracorporeal membrane oxygenation in cardiogenic shock patients: a comparison with conventional CentriMag biventricular support configuration. European Journal of Cardio-thoracic Surgery, 2017, 52, 1055-1061.	1.4	48

#	Article	IF	CITATIONS
37	Implantable Cardioverter-Defibrillators inÂPatients With a Continuous-Flow LeftÂVentricular Assist Device. JACC: Heart Failure, 2017, 5, 916-926.	4.1	47
38	Incidence and predictors of myocardial recovery on long-term left ventricular assist device support: Results from the United Network for Organ Sharing database. Journal of Heart and Lung Transplantation, 2015, 34, 1624-1629.	0.6	45
39	Ventricular Assist Device Utilization in Heart Transplant Candidates. Circulation: Heart Failure, 2018, 11, e004586.	3.9	44
40	Innate immunity in the adult mammalian heart: for whom the cell tolls. Transactions of the American Clinical and Climatological Association, 2010, 121, 34-50; discussion 50-1.	0.5	44
41	Dose-dependent association between amiodarone and severe primary graft dysfunction in orthotopic heart transplantation. Journal of Heart and Lung Transplantation, 2017, 36, 1226-1233.	0.6	42
42	Watchful Waiting in Continuous-Flow Left Ventricular Assist Device Patients With Ongoing Hemolysis Is Associated With an Increased Risk for Cerebrovascular Accident or Death. Circulation: Heart Failure, 2016, 9, .	3.9	41
43	Adrenergic Ca _V 1.2 Activation via Rad Phosphorylation Converges at α _{1C} I-II Loop. Circulation Research, 2021, 128, 76-88.	4.5	39
44	Hypertension and Stroke in Patients with Left Ventricular Assist Devices (LVADs). Current Hypertension Reports, 2016, 18, 12.	3.5	38
45	Changes in End-Organ Function in Patients With Prolonged Continuous-Flow Left Ventricular Assist Device Support. Annals of Thoracic Surgery, 2017, 103, 717-724.	1.3	38
46	Nutritional status in patients on left ventricular assist device support. Journal of Thoracic and Cardiovascular Surgery, 2005, 130, e3-e4.	0.8	37
47	Ventricular assist device use for the treatment of acute viral myocarditis. Journal of Thoracic and Cardiovascular Surgery, 2006, 131, 1190-1191.	0.8	37
48	Therapeutic targeting of innate immunity in the failing heart. Journal of Molecular and Cellular Cardiology, 2011, 51, 594-599.	1.9	37
49	Impact of Socioeconomic Status on Patients Supported With a Left Ventricular Assist Device. Circulation: Heart Failure, 2016, 9, .	3.9	37
50	Ventricular assist device elicits serum natural IgG that correlates with the development of primary graft dysfunction following heart transplantation. Journal of Heart and Lung Transplantation, 2017, 36, 862-870.	0.6	36
51	Reverse Remodeling With Left Ventricular Assist Devices. Circulation Research, 2021, 128, 1594-1612.	4.5	36
52	Effect of pulmonary vascular resistance before left ventricular assist device implantation on short- and long-term post-transplant survival. Journal of Thoracic and Cardiovascular Surgery, 2015, 150, 1352-1361.e2.	0.8	35
53	Preoperative Proteinuria and Reduced Glomerular Filtration Rate Predicts Renal Replacement Therapy in Patients Supported With Continuous-Flow Left Ventricular Assist Devices. Circulation: Heart Failure, 2016, 9, .	3.9	34
54	Contemporary outcome of unplanned right ventricular assist device for severe right heart failure after continuous-flow left ventricular assist device insertion. Interactive Cardiovascular and Thoracic Surgery, 2017, 24, 828-834.	1.1	34

#	Article	IF	CITATIONS
55	Effect of Donor Age on Long-Term Survival Following Cardiac Transplantation. Journal of Cardiac Surgery, 2006, 21, 125-129.	0.7	33
56	Psychosocial Risk and Its Association With Outcomes in Continuous-Flow Left Ventricular Assist Device Patients. Circulation: Heart Failure, 2020, 13, e006910.	3.9	33
57	Functional significance of the discordance between transcriptional profile and left ventricular structure/function during reverse remodeling. JCl Insight, 2016, 1, e86038.	5.0	33
58	Administration of Octreotide for Management of Postoperative High-Flow Chylothorax. Annals of Vascular Surgery, 2007, 21, 90-92.	0.9	32
59	Outcomes associated with mammalian target of rapamycin (mTOR) inhibitors in heart transplant recipients: A meta-analysis. International Journal of Cardiology, 2018, 265, 71-76.	1.7	32
60	Incidence and Impact of On-Cardiopulmonary Bypass Vasoplegia During Heart Transplantation. ASAIO Journal, 2018, 64, 43-51.	1.6	32
61	ECMO as a Bridge to Left Ventricular Assist Device or Heart Transplantation. JACC: Heart Failure, 2021, 9, 281-289.	4.1	32
62	Outcomes of contemporary mechanical circulatory support device configurations in patients with severe biventricular failure. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 530-535.e2.	0.8	31
63	Dysferlin Mediates the Cytoprotective Effects of TRAF2 Following Myocardial Ischemia Reperfusion Injury. Journal of the American Heart Association, 2014, 3, e000662.	3.7	30
64	Importance of stratifying acute kidney injury in cardiogenic shock resuscitated with mechanical circulatory support therapy. Journal of Thoracic and Cardiovascular Surgery, 2017, 154, 856-864.e4.	0.8	30
65	The role of implantable cardioverter defibrillators in patients bridged to transplantation with a continuous-flow left ventricular assist device: A propensity score matched analysis. Journal of Heart and Lung Transplantation, 2017, 36, 633-639.	0.6	30
66	Comparison of Percutaneous and Surgical Right Ventricular Assist Device Support After Durable Left Ventricular Assist Device Insertion. Journal of Cardiac Failure, 2019, 25, 105-113.	1.7	30
67	Tumor Necrosis Factor Receptor–Associated Factor 2 Signaling Provokes Adverse Cardiac Remodeling in the Adult Mammalian Heart. Circulation: Heart Failure, 2013, 6, 535-543.	3.9	29
68	Outcome of heart transplantation after bridge-to-transplant strategy using various mechanical circulatory support devices. Interactive Cardiovascular and Thoracic Surgery, 2017, 25, 918-924.	1.1	29
69	Implantation of a left ventricular assist device and the hub-and-spoke system in treating acute cardiogenic shock: Who survives?. Journal of Thoracic and Cardiovascular Surgery, 2003, 126, 1634-1635.	0.8	26
70	Clinical applications of miRNAs in cardiac remodeling and heart failure. Personalized Medicine, 2010, 7, 531-548.	1.5	26
71	Predictors of survival and ability to wean from short-term mechanical circulatory support device following acute myocardial infarction complicated by cardiogenic shock. European Heart Journal: Acute Cardiovascular Care, 2018, 7, 755-765.	1.0	26
72	End of Life with Left Ventricular Assist Device in Both Bridge to Transplant and Destination Therapy. Journal of Palliative Medicine, 2018, 21, 1284-1289.	1.1	26

#	Article	IF	CITATIONS
73	Aortic root thrombosis in patients supported with continuous-flow left ventricular assist devices. Journal of Heart and Lung Transplantation, 2018, 37, 1425-1432.	0.6	25
74	Clinical Outcomes After Left Ventricular Assist Device Implantation in Older Adults. JACC: Heart Failure, 2019, 7, 1069-1078.	4.1	25
75	HeartWare and HeartMate II Left Ventricular Assist Devices as Bridge to Transplantation: A Comparative Analysis. Annals of Thoracic Surgery, 2014, 97, 506-512.	1.3	24
76	Limited usefulness of endoscopic evaluation in patients with continuous-flow left ventricular assist devices and gastrointestinal bleeding. Journal of Heart and Lung Transplantation, 2018, 37, 723-732.	0.6	23
77	Impact of Obesity on Ventricular Assist Device Outcomes. Journal of Cardiac Failure, 2020, 26, 287-297.	1.7	23
78	Durability and clinical impact of tricuspid valve procedures in patients receiving a continuous-flow left ventricular assist device. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 520-527.e1.	0.8	22
79	Bridge to durable left ventricular assist device for refractory cardiogenic shock. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 752-762.e5.	0.8	22
80	Mechanical Circulatory Support Device Utilization and Heart Transplant Waitlist Outcomes in Patients With Restrictive and Hypertrophic Cardiomyopathy. Circulation: Heart Failure, 2018, 11, e004665.	3.9	22
81	Withdrawal of Left Ventricular Assist Devices: A Retrospective Analysis from a Single Institution. Journal of Palliative Medicine, 2020, 23, 368-374.	1.1	22
82	Cystatin C- Versus Creatinine-Based Assessment of Renal Function and Prediction of Early Outcomes Among Patients With a Left Ventricular Assist Device. Circulation: Heart Failure, 2020, 13, e006326.	3.9	22
83	Effect of Diabetes on Short- and Long-term Outcomes After Left Ventricular Assist Device Implantation. Journal of Heart and Lung Transplantation, 2005, 24, 2048-2053.	0.6	21
84	National trends and outcomes in device-related thromboembolic complications and malfunction among heart transplant candidates supported with continuous-flow left ventricular assist devices in the United States. Journal of Heart and Lung Transplantation, 2016, 35, 884-892.	0.6	21
85	A continuous-flow external ventricular assist device for cardiogenic shock: Evolution over 10Âyears. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 157-165.e1.	0.8	21
86	Prognostic value of vasoactive-inotropic score following continuous flow left ventricular assist device implantation. Journal of Heart and Lung Transplantation, 2019, 38, 930-938.	0.6	21
87	Impact of Temporary Percutaneous Mechanical Circulatory Support Before Transplantation in the 2018 Heart Allocation System. JACC: Heart Failure, 2022, 10, 12-23.	4.1	21
88	Double vs single internal thoracic artery harvesting in diabetic patients: role in perioperative infection rate. Journal of Cardiothoracic Surgery, 2008, 3, 35.	1,1	20
89	Prognostic implications of serial outpatient blood pressure measurements in patients with an axial continuous-flow left ventricular assist device. Journal of Heart and Lung Transplantation, 2019, 38, 396-405.	0.6	20
90	Recovery With Temporary Mechanical Circulatory Support While Waitlisted for Heart Transplantation. Journal of the American College of Cardiology, 2022, 79, 900-913.	2.8	20

#	Article	IF	CITATIONS
91	Concomitant aortic valve repair with continuous-flow left ventricular assist devices: Results and implications. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 201-210.e2.	0.8	19
92	Meta-Analysis of Point-of-Care Lung Ultrasonography Versus Chest Radiography in Adults With Symptoms of Acute Decompensated Heart Failure. American Journal of Cardiology, 2022, 174, 89-95.	1.6	19
93	Reduction Ascending Aortoplasty: Midterm Follow-Up and Predictors of Redilatation. Annals of Thoracic Surgery, 2006, 82, 586-591.	1.3	18
94	Role of Hyperbaric Oxygen Therapy in the Treatment of Postoperative Organ/Space Sternal Surgical Site Infections. World Journal of Surgery, 2007, 31, 1702-1706.	1.6	18
95	Effect of Cryopreservation Techniques on Aortic Valve Glycosaminoglycans. Artificial Organs, 2006, 30, 259-264.	1.9	17
96	Novel minimally invasive surgical approach using an external ventricular assist device and extracorporeal membrane oxygenation in refractory cardiogenic shock. European Journal of Cardio-thoracic Surgery, 2017, 51, ezw349.	1.4	17
97	Effect of CYP2C9 and VKORC1 Gene Variants on Warfarin Response in Patients with Continuous-Flow Left Ventricular Assist Devices. ASAIO Journal, 2016, 62, 558-564.	1.6	17
98	The influence of advanced age on venous–arterial extracorporeal membrane oxygenation outcomes. European Journal of Cardio-thoracic Surgery, 2018, 53, 1151-1157.	1.4	16
99	Structural and functional cardiac profile after prolonged duration of mechanical unloading: potential implications for myocardial recovery. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1463-H1476.	3.2	16
100	Bridging to transplantation with left ventricular assist devices: Outcomes in patients aged 60 years and older. Journal of Thoracic and Cardiovascular Surgery, 2005, 130, 881-882.	0.8	15
101	Effects of Resveratrol in Storage Solution on Adhesion Molecule Expression and Nitric Oxide Synthesis in Vein Grafts. Annals of Thoracic Surgery, 2005, 80, 1773-1778.	1.3	15
102	Acute kidney injury following left ventricular assist device implantation: Contemporary insights and future perspectives. Journal of Heart and Lung Transplantation, 2019, 38, 797-805.	0.6	15
103	Effect of Socioeconomic Status on Patients Supported with Contemporary Left Ventricular Assist Devices. ASAIO Journal, 2020, 66, 373-380.	1.6	15
104	Outcomes after heart transplantation for al compared to ATTR cardiac amyloidosis. Clinical Transplantation, 2020, 34, e14028.	1.6	15
105	Gut microbial diversity, inflammation, and oxidative stress are associated with tacrolimus dosing requirements early after heart transplantation. PLoS ONE, 2020, 15, e0233646.	2.5	15
106	Predictors of Survival for Patients with Acute Decompensated Heart Failure Requiring Extra-Corporeal Membrane Oxygenation Therapy. ASAIO Journal, 2019, 65, 781-787.	1.6	14
107	Palliative Care Consultation in Cardiogenic Shock Requiring Short-Term Mechanical Circulatory Support: A Retrospective Cohort Study. Journal of Palliative Medicine, 2019, 22, 432-436.	1.1	14
108	Comparing outcomes for infiltrative and restrictive cardiomyopathies under the new heart transplant allocation system. Clinical Transplantation, 2020, 34, e14109.	1.6	14

#	Article	IF	CITATIONS
109	Left Ventricular Assist Device Therapy in Older Adults: Addressing Common Clinical Questions. Journal of the American Geriatrics Society, 2019, 67, 2410-2419.	2.6	13
110	Exception Status Listing in the New Adult Heart Allocation System: A New Solution to an Old Problem?. Circulation: Heart Failure, 2021, 14, e007916.	3.9	13
111	Increased Opportunities for Transplantation for Women in the New Heart Allocation System. Journal of Cardiac Failure, 2022, 28, 1149-1157.	1.7	12
112	Angiopoietin-2: marker or mediator of angiogenesis in continuous-flow left ventricular assist device patients?. Journal of Thoracic Disease, 2016, 8, 3042-3045.	1.4	11
113	Discriminatory performance of positive urine hemoglobin for detection of significant hemolysis in patients with continuous-flow left ventricular assist devices. Journal of Heart and Lung Transplantation, 2017, 36, 59-63.	0.6	11
114	Cardiac Implantable Electronic Devices Following Heart Transplantation. JACC: Clinical Electrophysiology, 2020, 6, 1028-1042.	3.2	11
115	Association between recipient blood type and heart transplantation outcomes in the United States. Journal of Heart and Lung Transplantation, 2020, 39, 363-370.	0.6	11
116	Safety of reduced anti-thrombotic strategy in patients with HeartMate 3 left ventricular assist device. Journal of Heart and Lung Transplantation, 2021, 40, 237-240.	0.6	11
117	Residual mitral regurgitation in patients with left ventricular assist device support – An INTERMACS analysis. Journal of Heart and Lung Transplantation, 2022, 41, 1638-1645.	0.6	11
118	Biology of myocardial recovery in advanced heart failure with long-term mechanical support. Journal of Heart and Lung Transplantation, 2022, 41, 1309-1323.	0.6	11
119	Graft Survival After Cardiac Transplantation for Alcohol Cardiomyopathy. Transplantation, 2014, 98, 465-469.	1.0	10
120	Non-invasive measurement of peripheral, central and 24-hour blood pressure in patients with continuous-flow left ventricular assist device. Journal of Heart and Lung Transplantation, 2017, 36, 694-697.	0.6	10
121	Outcomes of bridge to cardiac retransplantation in the contemporary mechanical circulatory support era. Journal of Thoracic and Cardiovascular Surgery, 2019, 158, 171-181.e1.	0.8	10
122	Surgical Ablation of Atrial Fibrillation: The Columbia Presbyterian Experience. Journal of Cardiac Surgery, 2006, 21, 441-448.	0.7	9
123	Association Between "Unacceptable Condition―Expressed in Palliative Care Consultation Before Left Ventricular Assist Device Implantation and Care Received at the End of Life. Journal of Pain and Symptom Management, 2020, 60, 976-983.e1.	1.2	9
124	De Novo Human Leukocyte Antigen Allosensitization in Heartmate 3 Versus Heartmate II Left Ventricular Assist Device Recipients. ASAIO Journal, 2022, 68, 226-232.	1.6	9
125	Machine Learning-Based Prediction of Myocardial Recovery in Patients With Left Ventricular Assist Device Support. Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE121008711.	3.9	9
126	<scp>VA</scp> â€ <scp>ECMO</scp> for cardiogenic shock in the contemporary era of heart transplantation: Which patients should be urgently transplanted?. Clinical Transplantation, 2018, 32, e13356.	1.6	8

#	Article	IF	CITATIONS
127	Influence of Atrial Fibrillation on Functional Tricuspid Regurgitation in Patients With HeartMate 3. Journal of the American Heart Association, 2021, 10, e018334.	3.7	8
128	Impact of heart failure drug therapy on rates of gastrointestinal bleeding in LVAD recipients: An INTERMACS analysis. International Journal of Artificial Organs, 2021, 44, 965-971.	1.4	8
129	Transcriptional patterns of reverse remodeling with left ventricular assist devices: a consistent signature. Expert Review of Medical Devices, 2016, 13, 1029-1034.	2.8	7
130	Outflow Graft Narrowing of the HeartMate 3 Left Ventricular Assist Device. Annals of Thoracic Surgery, 2023, 115, 1282-1288.	1.3	7
131	Mechanical Circulatory Support for Right Ventricular Failure. Cardiac Failure Review, 2022, 8, e14.	3.0	7
132	Proteinuria in left ventricular assist device candidates: An emerging risk factor for renal failure and mortality. Journal of Heart and Lung Transplantation, 2018, 37, 143-145.	0.6	6
133	Endoscopic Algorithm for Management of Gastrointestinal Bleeding in Patients With Continuous Flow LVADs: A Prospective Validation Study. Journal of Cardiac Failure, 2020, 26, 324-332.	1.7	6
134	Impact of Induction Immunosuppression on Post-Transplant Outcomes of Patients Bridged with Contemporary Left Ventricular Assist Devices. ASAIO Journal, 2020, 66, 261-267.	1.6	6
135	Simplified Placement of Multiple Artificial Mitral Valve Chords. Heart Surgery Forum, 2005, 8, E129-E131.	0.5	6
136	Predictors of Survival and Ventricular Recovery Following Acute Myocardial Infarction Requiring Extracorporeal Membrane Oxygenation Therapy. ASAIO Journal, 2022, 68, 800-807.	1.6	6
137	Rates of Cycling Cells in Cryopreserved Valvular Homograft: A Preliminary Study. Artificial Organs, 2007, 31, 152-154.	1.9	5
138	Impact of Obesity on Readmission in Patients With Left Ventricular Assist Devices. Annals of Thoracic Surgery, 2018, 105, 1192-1198.	1.3	5
139	Renal risk stratification in left ventricular assist device therapy. Expert Review of Medical Devices, 2018, 15, 27-33.	2.8	5
140	Increased Aortic Stiffness Is Associated With Higher Rates of Stroke, Gastrointestinal Bleeding and Pump Thrombosis in Patients With a Continuous Flow Left Ventricular Assist Device. Journal of Cardiac Failure, 2021, 27, 696-699.	1.7	5
141	Critically appraising the 2018 United Network for Organ Sharing donor allocation policy. Current Opinion in Anaesthesiology, 2021, Publish Ahead of Print, .	2.0	5
142	Modulation of left ventricular dilation remodeling with epicardial restraint devices in postmyocardial infarction heart failure. Current Heart Failure Reports, 2009, 6, 229-235.	3.3	4
143	Combined Therapy of Ventricular Assist Device and Membrane Oxygenator for Profound Acute Cardiopulmonary Failure. ASAIO Journal, 2017, 63, 713-719.	1.6	4
144	Role of computed tomography angiography for HeartMate II left ventricular assist device thrombosis. International Journal of Artificial Organs, 2018, 41, 325-332.	1.4	4

#	Article	IF	CITATIONS
145	Red Cell Distribution Width Predicts 90 Day Mortality in Continuous-Flow Left Ventricular Assist Device Patients. ASAIO Journal, 2019, 65, 233-240.	1.6	4
146	Prior Amiodarone Exposure Reduces Tacrolimus Dosing Requirements in Heart Transplant Recipients. Progress in Transplantation, 2019, 29, 129-134.	0.7	4
147	Impella percutaneous left ventricular assist device as mechanical circulatory support for cardiogenic shock: A retrospective analysis from a tertiary academic medical center. Catheterization and Cardiovascular Interventions, 2020, , .	1.7	4
148	C-Reactive Protein Levels Predict Outcomes in Continuous-Flow Left Ventricular Assist Device Patients. ASAIO Journal, 2021, Publish Ahead of Print, 884-890.	1.6	4
149	Presence of Intracardiac Thrombus at the Time of Left Ventricular Assist Device Implantation Is Associated With an Increased Risk of Stroke and Death. Journal of Cardiac Failure, 2021, 27, 1367-1373.	1.7	4
150	Cerebral vasoreactivity in HeartMate 3 patients. Journal of Heart and Lung Transplantation, 2021, 40, 786-793.	0.6	4
151	Impact of Pretransplant Malignancy on Heart Transplantation Outcomes: Contemporary United Network for Organ Sharing Analysis Amidst Evolving Cancer Therapies. Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE121008968.	3.9	4
152	The Future of Human Valve Allografts: Bioengineering and Stem Cells Artificial Organs, 2005, 29, 923-923.	1.9	3
153	Impact of Sharing O Heart With Non-O Recipients: Simulation in the United Network for Organ Sharing Registry. Annals of Thoracic Surgery, 2018, 106, 1356-1363.	1.3	3
154	Late inflow or outflow obstruction requiring surgical intervention after HeartMate 3 left ventricular assist device insertion. Interactive Cardiovascular and Thoracic Surgery, 2020, 31, 626-628.	1.1	3
155	Consequences of functional mitral regurgitation and atrial fibrillation in patients with left ventricular assist devices. Journal of Heart and Lung Transplantation, 2020, 39, 1398-1407.	0.6	3
156	Impact of socioeconomic deprivation on evaluation for heart transplantation at an urban academic medical center. Clinical Transplantation, 2022, 36, e14652.	1.6	3
157	17β-estradiol effects on human coronaries and grafts employed in myocardial revascularization: a preliminary study. Journal of Cardiothoracic Surgery, 2006, 1, 46.	1.1	2
158	Mediastinal Sarcoma with Deviated Tracheal Anatomy. Journal of Thoracic Oncology, 2008, 3, 82-83.	1.1	2
159	Relationship of hemolysis with discordance in paired activated partial thromboplastin time and anti-Factor Xa measurements in continuous-flow left ventricular assist device patients. Journal of Heart and Lung Transplantation, 2016, 35, 1365-1367.	0.6	2
160	Reply. JACC: Heart Failure, 2019, 7, 732.	4.1	2
161	Effect of Pulmonary Hypertension on Transplant Outcomes in Patients With Ventricular Assist Devices. Annals of Thoracic Surgery, 2020, 110, 158-164.	1.3	2
162	Advanced heart failure patients supported with ambulatory inotropic therapy: What defines success of therapy?. American Heart Journal, 2021, 239, 11-18.	2.7	2

#	Article	IF	CITATIONS
163	OUP accepted manuscript. Interactive Cardiovascular and Thoracic Surgery, 2021, , .	1.1	2
164	Implantable Cardioverter-Defibrillators in Heart Transplant Recipients With Allograft Failure. JACC: Clinical Electrophysiology, 2020, 6, 245-247.	3.2	1
165	Concurrent coronary and carotid artery surgery: an open debate. European Heart Journal, 2005, 27, 1258-1259.	2.2	0
166	Digital Recording of Operations. Annals of Thoracic Surgery, 2006, 81, 408-409.	1.3	0
167	Assessment of a New Experimental Model of Isolated Right Ventricular Failure. Artificial Organs, 2010, 34, 269-270.	1.9	0
168	Invited Commentary. Annals of Thoracic Surgery, 2018, 106, 519-520.	1.3	0
169	Use of Durable Continuous-Flow Ventricular Assist Devices in Patients on Immunosuppression. ASAIO Journal, 2018, 64, 334-337.	1.6	Ο
170	Response by Truby and Topkara to Letter Regarding Article, "Impact of Bridge to Transplantation With Continuous-Flow Left Ventricular Assist Devices on Posttransplantation Mortality: A Propensity-Matched Analysis of the United Network of Organ Sharing Database― Circulation, 2019, 140, e942-e943.	1.6	0
171	How can we better inform our patients about postâ€heart transplantation survival? A conditional survival analysis. Clinical Transplantation, 2021, 35, e14449.	1.6	0
172	Molecular and Cellular Mechanisms for Myocardial Recovery. , 2011, , 119-133.		0
173	Local competition influences donor heart acceptance practice. Journal of Heart and Lung Transplantation, 2020, 39, 835-838.	0.6	0
174	Abstract 21416: Variation Across Centers and Predictors of Initial Immunosuppression Strategy After Heart Transplant. Circulation, 2017, 136, .	1.6	0
175	Abstract 20932: Dynamic Regulation of Myocardial Long Noncoding RNAs in Human Heart Failure and Reverse Remodeling With Left Ventricular Assist Device Support. Circulation, 2017, 136, .	1.6	Ο
176	Abstract 21394: Socioeconomic and Racial Disparities in Outcomes Among Patients Listed for Heart Transplant in the United States. Circulation, 2017, 136, .	1.6	0
177	Abstract 21350: Outcomes With Steroid-Free Maintenance Immunosuppression After Heart Transplant: Results From the United Network for Organ Sharing Registry. Circulation, 2017, 136, .	1.6	0