Wei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3465752/publications.pdf

Version: 2024-02-01

60 papers 15,119 citations

36 h-index 61 g-index

64 all docs

64
docs citations

64 times ranked 24065 citing authors

#	Article	IF	CITATIONS
1	HSP90-CDC37 functions as a chaperone for the oncogenic FGFR3-TACC3 fusion. Molecular Therapy, 2022, 30, 1610-1627.	8.2	5
2	IGFBP2 promotes tumor progression by inducing alternative polarization of macrophages in pancreatic ductal adenocarcinoma through the STAT3 pathway. Cancer Letters, 2021, 500, 132-146.	7.2	42
3	The Prognostic and Therapeutic Value of the Mutational Profile of Blood and Tumor Tissue in Head and Neck Squamous Cell Carcinoma. Oncologist, 2021, 26, e279-e289.	3.7	22
4	<i>SMARCA4</i> mutations in <i>KRAS</i> â€mutant lung adenocarcinoma: a multiâ€cohort analysis. Molecular Oncology, 2021, 15, 462-472.	4.6	29
5	Recruitment of KMT2C/MLL3 to DNA Damage Sites Mediates DNA Damage Responses and Regulates PARP Inhibitor Sensitivity in Cancer. Cancer Research, 2021, 81, 3358-3373.	0.9	32
6	scGCN is a graph convolutional networks algorithm for knowledge transfer in single cell omics. Nature Communications, 2021, 12, 3826.	12.8	40
7	scLM: Automatic Detection of Consensus Gene Clusters Across Multiple Single-cell Datasets. Genomics, Proteomics and Bioinformatics, 2021, 19, 330-341.	6.9	22
8	IGFBP2: integrative hub of developmental and oncogenic signaling network. Oncogene, 2020, 39, 2243-2257.	5.9	79
9	IGFBP2 regulates PD-L1 expression by activating the EGFR-STAT3 signaling pathway in malignant melanoma. Cancer Letters, 2020, 477, 19-30.	7.2	47
10	Dissecting intratumoral myeloid cell plasticity by single cell RNAâ€seq. Cancer Medicine, 2019, 8, 3072-3085.	2.8	103
11	Favorable outcome of patients with lung adenocarcinoma harboring POLE mutations and expressing high PD-L1. Molecular Cancer, 2018, 17, 81.	19.2	27
12	miR-30 disrupts senescence and promotes cancer by targeting both p16INK4A and DNA damage pathways. Oncogene, 2018, 37, 5618-5632.	5.9	38
13	SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. Nature Communications, 2017, 8, 14098.	12.8	80
14	<i>MIR506</i> induces autophagy-related cell death in pancreatic cancer cells by targeting the STAT3 pathway. Autophagy, 2017, 13, 703-714.	9.1	49
15	Circulating mutational portrait of cancer: manifestation of aggressive clonal events in both early and late stages. Journal of Hematology and Oncology, 2017, 10, 100.	17.0	28
16	PKCl $\hat{\mu}$ phosphorylates MIIP and promotes colorectal cancer metastasis through inhibition of RelA deacetylation. Nature Communications, 2017, 8, 939.	12.8	35
17	<i><scp>MIIP</scp></i> haploinsufficiency induces chromosomal instability and promotes tumour progression in colorectal cancer. Journal of Pathology, 2017, 241, 67-79.	4.5	13
18	OUP accepted manuscript. Neuro-Oncology, 2017, 19, 1206-1216.	1.2	17

#	Article	IF	CITATIONS
19	Mutational Landscapes of Smoking-Related Cancers in Caucasians and African Americans: Precision Oncology Perspectives at Wake Forest Baptist Comprehensive Cancer Center. Theranostics, 2017, 7, 2914-2923.	10.0	31
20	MIIP accelerates epidermal growth factor receptor protein turnover and attenuates proliferation in non-small cell lung cancer. Oncotarget, 2016, 7, 9118-9134.	1.8	15
21	Glioma progression is mediated by an addiction to aberrant IGFBP2 expression and can be blocked using anti-IGFBP2 strategies. Journal of Pathology, 2016, 239, 355-364.	4.5	39
22	MiR-502/SET8 regulatory circuit in pathobiology of breast cancer. Cancer Letters, 2016, 376, 259-267.	7.2	36
23	IGFBP2 Activates the NF-κB Pathway to Drive Epithelial–Mesenchymal Transition and Invasive Character in Pancreatic Ductal Adenocarcinoma. Cancer Research, 2016, 76, 6543-6554.	0.9	84
24	MIIP remodels Rac1-mediated cytoskeleton structure in suppression of endometrial cancer metastasis. Journal of Hematology and Oncology, 2016, 9, 112.	17.0	17
25	Augmentation of Response to Chemotherapy by microRNA-506 Through Regulation of RAD51 in Serous Ovarian Cancers. Journal of the National Cancer Institute, 2015, 107, .	6.3	102
26	Mutational landscape of gastric adenocarcinoma in Chinese: Implications for prognosis and therapy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1107-1112.	7.1	137
27	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. New England Journal of Medicine, 2015, 372, 2481-2498.	27.0	2,582
28	Altered expression and loss of heterozygosity of the migration and invasion inhibitory protein (MIIP) gene in breast cancer. Oncology Reports, 2015, 33, 2771-2778.	2.6	9
29	<scp>MiR</scp> â€506 inhibits multiple targets in the epithelialâ€toâ€mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer. Journal of Pathology, 2015, 235, 25-36.	4.5	94
30	Interferon alpha-inducible protein 27 promotes epithelial–mesenchymal transition and induces ovarian tumorigenicity and stemness. Journal of Surgical Research, 2015, 193, 255-264.	1.6	59
31	Two mature products of MIR-491 coordinate to suppress key cancer hallmarks in glioblastoma. Oncogene, 2015, 34, 1619-1628.	5.9	82
32	<scp>MiR</scp> â€506 suppresses proliferation and induces senescence by directly targeting the <scp>CDK4</scp> /6– <scp>FOXM1</scp> axis in ovarian cancer. Journal of Pathology, 2014, 233, 308-318.	4.5	112
33	Integrated MicroRNA Network Analyses Identify a Poor-Prognosis Subtype of Gastric Cancer Characterized by the miR-200 Family. Clinical Cancer Research, 2014, 20, 878-889.	7.0	97
34	Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions. Journal of Hematology and Oncology, 2014, 7, 19.	17.0	115
35	The Somatic Genomic Landscape of Glioblastoma. Cell, 2013, 155, 462-477.	28.9	3,979
36	Integrated Analyses Identify a Master MicroRNA Regulatory Network for the Mesenchymal Subtype in Serous Ovarian Cancer. Cancer Cell, 2013, 23, 186-199.	16.8	340

#	Article	IF	CITATIONS
37	Integrated genomic characterization of endometrial carcinoma. Nature, 2013, 497, 67-73.	27.8	4,075
38	The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. Journal of Clinical Investigation, 2013, 123, 855-65.	8.2	159
39	Insulin-like growth factor-binding protein 2-driven glioma progression is prevented by blocking a clinically significant integrin, integrin-linked kinase, and NF-κB network. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3475-3480.	7.1	97
40	Association of BRCA1 and BRCA2 Mutations With Survival, Chemotherapy Sensitivity, and Gene Mutator Phenotype in Patients With Ovarian Cancer. JAMA - Journal of the American Medical Association, 2011, 306, 1557.	7.4	466
41	MIIP, a Cytoskeleton Regulator that Blocks Cell Migration and Invasion, Delays Mitosis, and Suppresses Tumorogenesis. Current Protein and Peptide Science, 2011, 12, 68-73.	1.4	19
42	IGF binding protein 2 supports the survival and cycling of hematopoietic stem cells. Blood, 2011, 118, 3236-3243.	1.4	79
43	Functional SNP in the microRNA-367 binding site in the 3′UTR of the calcium channel ryanodine receptor gene 3 (<i>RYR3</i>) affects breast cancer risk and calcification. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13653-13658.	7.1	144
44	Definition of a Functional Single Nucleotide Polymorphism in the Cell Migration Inhibitory Gene <i>MIIP</i> That Affects the Risk of Breast Cancer. Cancer Research, 2010, 70, 1024-1032.	0.9	16
45	Ilp45 Inhibits Cell Migration through Inhibition of HDAC6. Journal of Biological Chemistry, 2010, 285, 3554-3560.	3.4	46
46	IGFBP2 is a candidate biomarker for <i>Ink4a-Arf</i> status and a therapeutic target for high-grade gliomas. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16675-16679.	7.1	52
47	Plasma IGFBP-2 levels predict clinical outcomes of patients with high-grade gliomas. Neuro-Oncology, 2009, 11, 468-476.	1.2	87
48	An miR-502–Binding Site Single-Nucleotide Polymorphism in the 3′-Untranslated Region of the ⟨i>SET8⟨ i> Gene Is Associated with Early Age of Breast Cancer Onset. Clinical Cancer Research, 2009, 15, 6292-6300.	7.0	106
49	NGAL decreases E-cadherin-mediated cell–cell adhesion and increases cell motility and invasion through Rac1 in colon carcinoma cells. Laboratory Investigation, 2009, 89, 531-548.	3.7	97
50	IGFBP2 and IGFBP5 Overexpression Correlates With the Lymph Node Metastasis in T1 Breast Carcinomas. Breast Journal, 2008, 14, 261-267.	1.0	54
51	Polymorphisms in microRNA targets: a gold mine for molecular epidemiology. Carcinogenesis, 2008, 29, 1306-1311.	2.8	235
52	Insulin-like growth factor binding protein 2 promotes glioma development and progression. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11736-11741.	7.1	125
53	An Interaction between Insulin-like Growth Factor-binding Protein 2 (IGFBP2) and Integrin α5 Is Essential for IGFBP2-induced Cell Mobility. Journal of Biological Chemistry, 2006, 281, 14085-14091.	3.4	104
54	Insulin-like growth factor-binding protein 2 and 5 are differentially regulated in ovarian cancer of different histologic types. Modern Pathology, 2006, 19, 1149-1156.	5 . 5	60

#	Article	IF	CITATION
55	Inactivation of the Invasion Inhibitory Gene Ilp45 by Alternative Splicing in Gliomas. Cancer Research, 2005, 65, 3562-3567.	0.9	26
56	Insulin-like growth factor binding protein 2 promotes ovarian cancer cell invasion. Molecular Cancer, 2005, 4, 7.	19.2	72
57	Expression of insulin-like growth factor-binding protein 2 in melanocytic lesions. Journal of Cutaneous Pathology, 2003, 30, 599-605.	1.3	24
58	Ilp45, an insulin-like growth factor binding protein 2 (IGFBP-2) binding protein, antagonizes IGFBP-2 stimulation of glioma cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13970-13975.	7.1	74
59	Insulin-like growth factor binding protein 2 enhances glioblastoma invasion by activating invasion-enhancing genes. Cancer Research, 2003, 63, 4315-21.	0.9	147
60	Tissue Microarrays: Applications in Neuropathology Research, Diagnosis, and Education. Brain Pathology, 2002, 12, 95-107.	4.1	108