Kandice Levental

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3465336/publications.pdf

Version: 2024-02-01

42 papers

10,590 citations

168829 31 h-index 299063 42 g-index

46 all docs

46 docs citations

46 times ranked

14979 citing authors

#	Article	IF	CITATIONS
1	Lipid–Protein Interactions in Plasma Membrane Organization and Function. Annual Review of Biophysics, 2022, 51, 135-156.	4.5	30
2	Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages. Soft Matter, 2021, 17, 288-297.	1.2	66
3	Reply to JJ Christensen et al American Journal of Clinical Nutrition, 2021, 113, 1712-1713.	2.2	O
4	Regulatory TÂcell differentiation is controlled by $\hat{l}\pm KG$ -induced alterations in mitochondrial metabolism and lipid homeostasis. Cell Reports, 2021, 37, 109911.	2.9	39
5	Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nature Chemical Biology, 2020, 16, 644-652.	3.9	414
6	Myelin-Associated MAL and PLP Are Unusual among Multipass Transmembrane Proteins in Preferring Ordered Membrane Domains. Journal of Physical Chemistry B, 2020, 124, 5930-5939.	1.2	21
7	Lipidomic and biophysical homeostasis of mammalian membranes counteracts dietary lipid perturbations to maintain cellular fitness. Nature Communications, 2020, 11, 1339.	5.8	126
8	Cell-Derived Plasma Membrane Vesicles Are Permeable to Hydrophilic Macromolecules. Biophysical Journal, 2020, 118, 1292-1300.	0.2	30
9	Lipid Rafts: Controversies Resolved, Mysteries Remain. Trends in Cell Biology, 2020, 30, 341-353.	3.6	373
10	Sphingomyelin Metabolism Is a Regulator of K-Ras Function. Molecular and Cellular Biology, 2018, 38, .	1.1	40
11	Tuning Length Scales of Small Domains in Cell-Derived Membranes and Synthetic ModelÂMembranes. Biophysical Journal, 2018, 115, 690-701.	0.2	24
12	Lipinâ€1 regulation of phospholipid synthesis maintains endoplasmic reticulum homeostasis and is critical for tripleâ€negative breast cancer cell survival. FASEB Journal, 2017, 31, 2893-2904.	0.2	44
13	Structural determinants and functional consequences of protein affinity for membrane rafts. Nature Communications, 2017, 8, 1219.	5.8	231
14	n-Alcohol Length Governs Shift in Lo-Ld Mixing Temperatures in Synthetic and Cell-Derived Membranes. Biophysical Journal, 2017, 113, 1200-1211.	0.2	22
15	ï‰-3 polyunsaturated fatty acids direct differentiation of the membrane phenotype in mesenchymal stem cells to potentiate osteogenesis. Science Advances, 2017, 3, eaao1193.	4.7	105
16	Modular GAG-matrices to promote mammary epithelial morphogenesis inÂvitro. Biomaterials, 2017, 112, 20-30.	5.7	37
17	Polyunsaturated Lipids Regulate Membrane Domain Stability by Tuning Membrane Order. Biophysical Journal, 2016, 110, 1800-1810.	0.2	155
18	Remodeling of the postsynaptic plasma membrane during neural development. Molecular Biology of the Cell, 2016, 27, 3480-3489.	0.9	89

#	Article	IF	CITATIONS
19	Domain Stability in Biomimetic Membranes Driven by Lipid Polyunsaturation. Journal of Physical Chemistry B, 2016, 120, 11930-11941.	1.2	52
20	Structural Determinants of Raft Partitioning for Single-Pass Transmembrane Proteins. Biophysical Journal, 2016, 110, 205a.	0.2	1
21	Giant Plasma Membrane Vesicles: Models for Understanding Membrane Organization. Current Topics in Membranes, 2015, 75, 25-57.	0.5	82
22	Heparin desulfation modulates VEGF release and angiogenesis in diabetic wounds. Journal of Controlled Release, 2015, 220, 79-88.	4.8	100
23	Isolation of Giant Plasma Membrane Vesicles for Evaluation of Plasma Membrane Structure and Protein Partitioning. Methods in Molecular Biology, 2015, 1232, 65-77.	0.4	50
24	Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nature Medicine, 2014, 20, 360-367.	15.2	353
25	Membrane raft association is a determinant of plasma membrane localization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8500-8505.	3.3	178
26	Rafting through traffic: Membrane domains in cellular logistics. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 3003-3013.	1.4	76
27	Defined Polymer–Peptide Conjugates to Form Cellâ€Instructive starPEG–Heparin Matrices In Situ. Advanced Materials, 2013, 25, 2606-2610.	11.1	141
28	The Differentiation of the Plasma Membrane. FASEB Journal, 2013, 27, 586.1.	0.2	0
29	Sustainable Growth Factor Delivery through Affinity-Based Adsorption to starPEG-Heparin Hydrogels. ACS Symposium Series, 2012, , 525-541.	0.5	3
30	Using Mean Field Theory to Guide Biofunctional Materials Design. Advanced Functional Materials, 2012, 22, 1391-1398.	7.8	61
31	Sustained delivery of SDF- $1\hat{l}\pm$ from heparin-based hydrogels to attract circulating pro-angiogenic cells. Biomaterials, 2012, 33, 4792-4800.	5 . 7	152
32	Dual independent delivery of pro-angiogenic growth factors from starPEG-heparin hydrogels. Journal of Controlled Release, 2011, 156, 28-36.	4.8	116
33	Two-tier hydrogel degradation to boost endothelial cell morphogenesis. Biomaterials, 2011, 32, 9649-9657.	5.7	58
34	Analytical approaches to uptake and release of hydrogel-associated FGF-2. Journal of Materials Science: Materials in Medicine, 2010, 21, 915-923.	1.7	25
35	Modular StarPEGâ€Heparin Gels with Bifunctional Peptide Linkers. Macromolecular Rapid Communications, 2010, 31, 1529-1533.	2.0	52
36	FGF-2 and VEGF functionalization of starPEG–heparin hydrogels to modulate biomolecular and physical cues of angiogenesis. Biomaterials, 2010, 31, 7985-7994.	5.7	187

3

#	ARTICLE	IF	CITATION
37	A simple indentation device for measuring micrometer-scale tissue stiffness. Journal of Physics Condensed Matter, 2010, 22, 194120.	0.7	102
38	Enzymatically degradable heparin-polyethylene glycol gels with controlled mechanical properties. Chemical Communications, 2010, 46, 1141-1143.	2.2	50
39	Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling. Cell, 2009, 139, 891-906.	13.5	3,319
40	Demystifying the Effects of a Threeâ€Dimensional Microenvironment in Tissue Morphogenesis. Methods in Cell Biology, 2007, 83, 547-583.	0.5	72
41	Enhanced neovasculature formation in ischemic myocardium following delivery of pleiotrophin plasmid in a biopolymer. Biomaterials, 2005, 26, 1139-1144.	5.7	97
42	Tensional homeostasis and the malignant phenotype. Cancer Cell, 2005, 8, 241-254.	7.7	3,397