Susanne Striegler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3464873/publications.pdf

Version: 2024-02-01

567281 501196 45 836 15 28 citations h-index g-index papers 47 47 47 720 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Selective Carbohydrate Recognition by Synthetic Receptors in Aqueous Solution. Current Organic Chemistry, 2003, 7, 81-102.	1.6	163
2	A Sugar Discriminating Binuclear Copper(II) Complex. Journal of the American Chemical Society, 2003, 125, 11518-11524.	13.7	90
3	A Sugar's Choice:  Coordination to a Mononuclear or a Dinuclear Copper(II) Complex?. Inorganic Chemistry, 2005, 44, 2728-2733.	4.0	50
4	Investigation of Sugar-Binding Sites in Ternary Ligandâ^'Copper(II)â^'Carbohydrate Complexes. European Journal of Inorganic Chemistry, 2002, 2002, 487-495.	2.0	48
5	Evaluating Binuclear Copper(II) Complexes for Glycoside Hydrolysis. Inorganic Chemistry, 2010, 49, 2639-2648.	4.0	35
6	Designing selective sites in templated polymers utilizing coordinative bonds. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 804, 183-195.	2.3	34
7	Disaccharide recognition by binuclear copper(ii) complexes. Chemical Communications, 2008, , 5930.	4.1	33
8	Glycoside Hydrolysis with Sugar-Templated Microgel Catalysts. ACS Catalysis, 2012, 2, 50-55.	11.2	27
9	Hydrolysis of Glycosides with Microgel Catalysts. Inorganic Chemistry, 2011, 50, 8869-8878.	4.0	25
10	Macromolecular Salen Catalyst with Largely Enhanced Catalytic Activity. Organic Letters, 2008, 10, 241-244.	4.6	23
11	Crosslinked Microgels as Platform for Hydrolytic Catalysts. Biomacromolecules, 2018, 19, 1164-1174.	5 . 4	23
12	Investigation of disaccharide recognition by molecularly imprinted polymers. Bioseparation, 2001, 10, 307-314.	0.7	21
13	Miniemulsion polymers as solid support for transition metal catalysts. Polymer, 2010, 51, 606-615.	3.8	21
14	Cycloaliphatic Polymers via Late Transition Metal Catalysis. , 2005, , 101-154.		19
15	Discrimination of epimeric disaccharides by templated polymers. Analytica Chimica Acta, 2005, 539, 91-95.	5 . 4	17
16	Multi gram-scale synthesis of galactothionolactam and its transformation into a galactonoamidine. Carbohydrate Research, 2011, 346, 897-904.	2.3	16
17	Modulating the Catalytic Performance of an Immobilized Catalyst with Matrix Effects - A Critical Evaluation. ACS Catalysis, 2018, 8, 7710-7718.	11.2	15
18	Evaluating N-benzylgalactonoamidines as putative transition state analogs for \hat{l}^2 -galactoside hydrolysis. Organic and Biomolecular Chemistry, 2014, 12, 2792-2800.	2.8	13

#	Article	IF	CITATIONS
19	Biomimetic Glycoside Hydrolysis by a Microgel Templated with a Competitive Glycosidase Inhibitor. ACS Catalysis, 2018, 8, 8788-8795.	11.2	12
20	Chiral Ligand Exchange Adsorbents for Amines and Underivatized Amino Acids: 'Bait-and-Switch' Molecular Imprinting. ACS Symposium Series, 1998, , 109-118.	0.5	11
21	Binuclear complexes for aerobic oxidation of primary alcohols and carbohydrates. Tetrahedron, 2010, 66, 7927-7932.	1.9	11
22	N-Benzylgalactonoamidines as potent \hat{l}^2 -galactosidase inhibitors. Tetrahedron, 2012, 68, 47-52.	1.9	11
23	Structure–Activity Relationship of Highly Potent Galactonoamidine Inhibitors toward β-Galactosidase (<i>Aspergillus oryzae</i>). Journal of Medicinal Chemistry, 2014, 57, 8999-9009.	6.4	11
24	Tailored Interactions of the Secondary Coordination Sphere Enhance the Hydrolytic Activity of Cross-Linked Microgels. ACS Catalysis, 2019, 9, 1686-1691.	11.2	11
25	Illuminating the binding interactions of galactonoamidines during the inhibition of β-galactosidase (E.) Tj ETQq1	1 9.7843	14 rgBT /Ove
26	Binuclear copper(II) complexes discriminating epimeric glycosides and \hat{l}_{\pm} - and \hat{l}_{\pm} - glycosidic bonds in aqueous solution. Journal of Catalysis, 2016, 338, 349-364.	6.2	9
27	Discrimination of chiral copper(ii) complexes upon binding of galactonoamidine ligands. Dalton Transactions, 2016, 45, 15203-15210.	3.3	9
28	Nonionic Surfactant Blends to Control the Size of Microgels and Their Catalytic Performance during Glycoside Hydrolyses. ACS Catalysis, 2020, 10, 9458-9463.	11,2	9
29	Microgel-Catalyzed Hydrolysis of Nonactivated Disaccharides. ACS Catalysis, 2020, 10, 14451-14456.	11.2	8
30	Arabinoamidine synthesis and its inhibition toward \hat{l}^2 -glucosidase (sweet almonds) in comparison to a library of galactonoamidines. Bioorganic and Medicinal Chemistry, 2016, 24, 3371-3377.	3.0	7
31	Picomolar inhibition of \hat{l}^2 -galactosidase (bovine liver) attributed to loop closure. Bioorganic and Medicinal Chemistry, 2017, 25, 5194-5202.	3.0	7
32	Polarity and Critical Micelle Concentration of Surfactants Support the Catalytic Efficiency of Nanogels during Glycoside Hydrolyses. ACS Catalysis, 2022, 12, 8841-8847.	11,2	7
33	Transition Metal-Catalyzed Polymerization in Aqueous Systems. , 2005, , 231-278.		6
34	Tuning Templated Microgel Catalysts for Selective Glycoside Hydrolysis. Topics in Catalysis, 2012, 55, 460-465.	2.8	6
35	Evaluating hydrophobic galactonoamidines as transition state analogs for enzymatic \hat{l}^2 -galactoside hydrolysis. Bioorganic Chemistry, 2018, 77, 144-151.	4.1	4
36	Highly Active Ethene Polymerization Catalysts with Unusual Imine Ligands. , 2005, , 59-99.		3

#	Article	IF	Citations
37	Copolymerization of Carbon Monoxide with Alkenes. , 2005, , 279-305.		3
38	Antimicrobial Activity of Microgels with an Immobilized Copper(II) Complex Linked to Cross-Linking and Composition. ACS Applied Bio Materials, 2020, 3, 7611-7619.	4.6	3
39	Well-Defined Transition Metal Catalysts for Metathesis Polymerization. , 2005, , 155-191.		2
40	Catalysis in Acyclic Diene Metathesis (ADMET) Polymerization. , 2005, , 193-229.		2
41	Strategies for Catalytic Polymerization of Polar Monomers. , 2005, , 307-317.		1
42	Nickel Polymerization Catalysts with Ylide Steering Ligands. , 2005, , 1-26.		0
43	Microstructure Control of Ethene Homopolymers Through Tailored Ni,Pd(II) Catalysts. , 2005, , 27-58.		0
44	Structure–Activity-Relationship Studies to Elucidate Sources of Antibacterial Activity of Modular Polyacrylate Microgels. ACS Applied Bio Materials, 2021, 4, 7578-7586.	4.6	0
45	Solvent-controlled synthesis of bulky and polar-bulky galactonoamidines. Carbohydrate Research, 2022, 513, 108520.	2.3	О