Manuel Grande

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3464823/publications.pdf

Version: 2024-02-01

163 papers

7,408 citations

43 h-index 82 g-index

172 all docs

172 docs citations

172 times ranked

3972 citing authors

#	Article	IF	CITATIONS
1	Cassini Plasma Spectrometer Investigation. Space Science Reviews, 2004, 114, 1-112.	8.1	452
2	Corotating solar wind streams and recurrent geomagnetic activity: A review. Journal of Geophysical Research, 2006, 111 , .	3.3	396
3	PEACE: A PLASMA ELECTRON AND CURRENT EXPERIMENT. Space Science Reviews, 1997, 79, 351-398.	8.1	391
4	Current understanding of magnetic storms: Storm-substorm relationships. Journal of Geophysical Research, 1998, 103, 17705-17728.	3.3	309
5	Composition and Dynamics of Plasma in Saturn's Magnetosphere. Science, 2005, 307, 1262-1266.	12.6	281
6	Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Advances in Space Research, 2015, 55, 2745-2807.	2.6	256
7	The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission. Space Science Reviews, 2007, 126, 113-164.	8.1	241
8	The Cassini Cosmic Dust Analyzer. Space Science Reviews, 2004, 114, 465-518.	8.1	230
9	The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission. Planetary and Space Science, 2007, 55, 1772-1792.	1.7	214
10	Solar Wind-Induced Atmospheric Erosion at Mars: First Results from ASPERA-3 on Mars Express. Science, 2004, 305, 1933-1936.	12.6	204
11	The loss of ions from Venus through the plasma wake. Nature, 2007, 450, 650-653.	27.8	168
12	CEPPAD. Space Science Reviews, 1995, 71, 531-562.	8.1	150
13	A soft solid surface on Titan as revealed by the Huygens Surface Science Package. Nature, 2005, 438, 792-795.	27.8	139
14	First results from the RAPID imaging energetic particle spectrometer on board Cluster. Annales Geophysicae, 2001, 19, 1355-1366.	1.6	135
15	RAPID – The Imaging Energetic Particle Spectrometer on Cluster. Space Science Reviews, 1997, 79, 399-473.	8.1	117
16	Magnetospheric ion composition spectrometer onboard the CRRES spacecraft. Journal of Spacecraft and Rockets, 1992, 29, 585-591.	1.9	116
17	Plasma Acceleration Above Martian Magnetic Anomalies. Science, 2006, 311, 980-983.	12.6	111
18	Peace: A Plasma Electron and Current Experiment. , 1997, , 351-398.		110

#	Article	IF	CITATIONS
19	Carbon dioxide photoelectron energy peaks at Mars. Icarus, 2006, 182, 371-382.	2.5	105
20	Mass composition of the escaping plasma at Mars. Icarus, 2006, 182, 320-328.	2.5	103
21	Mars Express and Venus Express multi-point observations of geoeffective solar flare events in December 2006. Planetary and Space Science, 2008, 56, 873-880.	1.7	102
22	Medium energy neutral atom (MENA) imager for the IMAGE mission. Space Science Reviews, 2000, 91, 113-154.	8.1	90
23	SMART-1 mission to the Moon: Status, first results and goals. Advances in Space Research, 2006, 37, 6-13.	2.6	84
24	Structure of the martian wake. Icarus, 2006, 182, 329-336.	2.5	81
25	Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	8.1	71
26	A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft. Journal of Geophysical Research, 2009, 114, .	3.3	65
27	Location of the bow shock and ion composition boundaries at Venus—initial determinations from Venus Express ASPERA-4. Planetary and Space Science, 2008, 56, 780-784.	1.7	64
28	First medium energy neutral atom (MENA) Images of Earth's magnetosphere during substorm and storm-time. Geophysical Research Letters, 2001, 28, 1147-1150.	4.0	61
29	Statistical distribution of the storm-time proton ring current: POLAR measurements. Geophysical Research Letters, 2002, 29, 30-1-30-4.	4.0	61
30	The D-CIXS X-ray mapping spectrometer on SMART-1. Planetary and Space Science, 2003, 51, 427-433.	1.7	60
31	Numerical interpretation of high-altitude photoelectron observations. Icarus, 2006, 182, 383-395.	2.5	56
32	Electric fields within the martian magnetosphere and ion extraction: ASPERA-3 observations. Icarus, 2006, 182, 337-342.	2.5	54
33	Electron oscillations in the induced martian magnetosphere. Icarus, 2006, 182, 360-370.	2.5	54
34	The C1XS X-ray Spectrometer on Chandrayaan-1. Planetary and Space Science, 2009, 57, 717-724.	1.7	54
35	First ENA observations at Mars: ENA emissions from the martian upper atmosphere. Icarus, 2006, 182, 424-430.	2.5	53
36	In situ dust measurements in the inner Saturnian system. Planetary and Space Science, 2006, 54, 967-987.	1.7	50

#	Article	IF	CITATIONS
37	Ionospheric plasma acceleration at Mars: ASPERA-3 results. Icarus, 2006, 182, 308-319.	2.5	48
38	lonospheric photoelectrons at Venus: Initial observations by ASPERA-4 ELS. Planetary and Space Science, 2008, 56, 802-806.	1.7	48
39	Comparative analysis of Venus and Mars magnetotails. Planetary and Space Science, 2008, 56, 812-817.	1.7	48
40	Gamma-ray spectrometer (GRS) for lunar polar orbiter SELENE. Earth, Planets and Space, 2008, 60, 299-312.	2.5	48
41	The Cassini CAPS Electron Spectrometer. Geophysical Monograph Series, 0, , 257-262.	0.1	47
42	Entry of plasma sheet particles into the inner magnetosphere as observed by Polar/CAMMICE. Journal of Geophysical Research, 2000, 105, 25205-25219.	3.3	46
43	X-ray fluorescence observations of the moon by SMART-1/D-CIXS and the first detection of Ti K $\hat{l}\pm$ from the lunar surface. Planetary and Space Science, 2009, 57, 744-750.	1.7	46
44	Lunar X-ray fluorescence observations by the Chandrayaan-1 X-ray Spectrometer (C1XS): Results from the nearside southern highlands. Icarus, 2011, 214, 53-66.	2.5	46
45	Rationale for BepiColombo Studies of Mercury's Surface and Composition. Space Science Reviews, 2020, 216, 1.	8.1	46
46	First ENA observations at Mars: Subsolar ENA jet. Icarus, 2006, 182, 413-423.	2.5	42
47	PHEBUS: A double ultraviolet spectrometer to observe Mercury's exosphere. Planetary and Space Science, 2010, 58, 201-223.	1.7	42
48	Ring current ion composition during solar minimum and rising solar activity: Polar/CAMMICE/MICS results. Journal of Geophysical Research, 2001, 106, 19131-19147.	3.3	41
49	The D-CIXS X-ray spectrometer on the SMART-1 mission to the Moonâ€"First results. Planetary and Space Science, 2007, 55, 494-502.	1.7	41
50	CRRES observations of the composition of the ring-current ion populations. Advances in Space Research, 1996, 17, 17-24.	2.6	40
51	First ENA observations at Mars: Charge exchange ENAs produced in the magnetosheath. Icarus, 2006, 182, 431-438.	2.5	39
52	Auroral Ionospheric Ion Feeding of the Inner Plasma Sheet during Substorms. Journal of Geomagnetism and Geoelectricity, 1996, 48, 729-739.	0.9	37
53	Soft X-ray amplification in aluminium recombining plasma produced from a thin coated fibre. Journal of Physics B: Atomic, Molecular and Optical Physics, 1990, 23, 147-163.	1.5	36
54	The SMART-1 X-ray solar monitor (XSM): calibrations for D-CIXS and independent coronal science. Planetary and Space Science, 2002, 50, 1345-1353.	1.7	36

#	Article	IF	CITATIONS
55	Observations of magnetic anomaly signatures in Mars Express ASPERA-3 ELS data. Icarus, 2006, 182, 396-405.	2.5	36
56	The BepiColombo Mercury Imaging X-Ray Spectrometer: Science Goals, Instrument Performance and Operations. Space Science Reviews, 2020, 216, 1.	8.1	36
57	Plasma intrusion above Mars crustal fields—Mars Express ASPERA-3 observations. Icarus, 2006, 182, 406-412.	2.5	35
58	Multiple discrete-energy ion features in the inner magnetosphere: 9 February 1998, event. Annales Geophysicae, 2004, 22, 1297-1304.	1.6	34
59	Ion escape at Mars: Comparison of a 3-D hybrid simulation with Mars Express IMA/ASPERA-3 measurements. Icarus, 2006, 182, 350-359.	2,5	34
60	SMART-1 mission to the moon: Technology and science goals. Advances in Space Research, 2003, 31, 2323-2333.	2.6	33
61	Measurement and detailed analysis of single pass gain at $81\ \tilde{A}$ in a recombining laser produced fluorine plasma. Optics Communications, 1990 , 74 , $309-312$.	2.1	32
62	The scientific rationale for the C1XS X-ray spectrometer on India's Chandrayaan-1 mission to the moon. Planetary and Space Science, 2009, 57, 725-734.	1.7	30
63	Auroral Plasma Acceleration Above Martian Magnetic Anomalies. Space Science Reviews, 2007, 126, 333-354.	8.1	28
64	The Chandrayaan-1 X-ray Spectrometer: First results. Planetary and Space Science, 2012, 60, 217-228.	1.7	28
65	First ENA observations at Mars: Solar-wind ENAs on the nightside. Icarus, 2006, 182, 439-447.	2.5	27
66	Chandrayaan-1 X-ray Spectrometer (C1XS)—Instrument design and technical details. Planetary and Space Science, 2009, 57, 735-743.	1.7	26
67	The cosmic dust analyser onboard cassini: ten years of discoveries. CEAS Space Journal, 2011, 2, 3-16.	2.3	26
68	SERENA: Particle Instrument Suite for Determining the Sun-Mercury Interaction from BepiColombo. Space Science Reviews, 2021, 217, 11.	8.1	26
69	Solar Intensity X-ray and particle Spectrometer (SIXS). Planetary and Space Science, 2010, 58, 96-107.	1.7	25
70	Dawn-dusk asymmetry in particles of solar wind origin within the magnetosphere. Annales Geophysicae, 2001, 19, 1-9.	1.6	24
71	Lunar international science coordination/calibration targets (L-ISCT). Advances in Space Research, 2008, 42, 248-258.	2.6	24
72	Status of soft X-ray laser research at the Rutherford-Appleton laboratory. Plasma Physics and Controlled Fusion, 1988, 30, 35-44.	2.1	23

#	Article	IF	CITATIONS
73	Osiris—The optical, spectroscopic and infrared remote imaging system for the Rosetta Orbiter. Advances in Space Research, 1998, 21, 1505-1515.	2.6	23
74	Observations of iron, silicon, and other heavy ions in the geostationary altitude region during late March 1991. Journal of Geophysical Research, 1996, 101, 24707-24718.	3.3	22
75	Scientific rationale for the D-CIXS X-ray spectrometer on board ESA's SMART-1 mission to the Moon. Planetary and Space Science, 2003, 51, 435-442.	1.7	22
76	Energetic Neutral Atoms (ENA) at Mars: Properties of the hydrogen atoms produced upstream of the martian bow shock and implications for ENA sounding technique around non-magnetized planets. lcarus, 2006, 182, 448-463.	2.5	22
77	The Venusian induced magnetosphere: A case study of plasma and magnetic field measurements on the Venus Express mission. Planetary and Space Science, 2008, 56, 796-801.	1.7	22
78	Solar wind plasma protrusion into the martian magnetosphere: ASPERA-3 observations. Icarus, 2006, 182, 343-349.	2.5	21
79	IMF Direction Derived from Cycloid-Like Ion Distributions Observed by Mars Express. Space Science Reviews, 2007, 126, 239-266.	8.1	21
80	C1XS resultsâ€"First measurement of enhanced sodium on the lunar surface. Planetary and Space Science, 2014, 104, 279-287.	1.7	21
81	Investigation of magnetospheric interactions with the Hermean surface. Advances in Space Research, 1997, 19, 1609-1614.	2.6	20
82	Solar Intensity X-Ray and Particle Spectrometer SIXS: Instrument Design and First Results. Space Science Reviews, 2020, 216, $1.$	8.1	20
83	First polar and 1995-034 observations of the midaltitude cusp during a persistent northward IMF condition. Geophysical Research Letters, 1997, 24, 1475-1478.	4.0	19
84	First observation of energetic neutral atoms in the Venus environment. Planetary and Space Science, 2008, 56, 807-811.	1.7	19
85	Ground calibration of the Chandrayaan-1 X-ray Solar Monitor (XSM). Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 607, 544-553.	1.6	19
86	ENA detection in the dayside of Mars: ASPERA-3 NPD statistical study. Planetary and Space Science, 2008, 56, 840-845.	1.7	18
87	LunarEX—a proposal to cosmic vision. Experimental Astronomy, 2009, 23, 711-740.	3.7	18
88	An optimised thin film wavelength shifting coating for Cherenkov detection. Nuclear Instruments & Methods in Physics Research, 1983, 215, 539-548.	0.9	16
89	The Storm-substorm relationship: Current understanding and outlook. Geophysical Monograph Series, 2003, , 1-14.	0.1	16
90	Medium Energy Neutral Atom (MENA) Imager for the Image Mission. , 2000, , 113-154.		16

#	Article	IF	Citations
91	EISCAT/CRRES observations: nightside ionospheric ion outflow and oxygen-rich substorm injections. Annales Geophysicae, 1996, 14, 1032-1043.	1.6	15
92	The high precision gamma-ray spectrometer for lunar polar orbiter SELENE. Advances in Space Research, 2008, 42, 323-330.	2.6	15
93	Lunar Net—a proposal in response to an ESA M3 call in 2010 for a medium sized mission. Experimental Astronomy, 2012, 33, 587-644.	3.7	15
94	EISCAT/CRRES observations: nightside ionospheric ion outflow and oxygen-rich substorm injections. Annales Geophysicae, 1996, 14, 1032.	1.6	15
95	Raman scattering near metal nanostructures. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2035.	2.1	14
96	Energetic auroral electron distributions derived from global X-ray measurements and comparison with in-situ particle measurements. Geophysical Research Letters, 1998, 25, 4105-4108.	4.0	13
97	Instrumentation and performance evaluation of the XRS on SELENE orbiter. Earth, Planets and Space, 2008, 60, 277-281.	2.5	13
98	ESSC-ESF Position Paperâ€"Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC). Astrobiology, 2009, 9, 23-41.	3.0	13
99	Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure. Planetary and Space Science, 2018, 150, 50-59.	1.7	13
100	SMART-1 technology, scientific results and heritage for future space missions. Planetary and Space Science, 2018, 151, 141-148.	1.7	13
101	Survey of ring current composition during magnetic storms. Advances in Space Research, 1997, 20, 321-326.	2.6	12
102	Ready functions for calculating the Martian radiation environment. Journal of Space Weather and Space Climate, 2019, 9, A7.	3.3	12
103	Gamma-ray spectrometer for Japanese lunar polar orbiter. Advances in Space Research, 1999, 23, 1837-1840.	2.6	11
104	Use of Fe charge state changes as a tracer for solar wind entry to the magnetosphere. Geophysical Research Letters, 2000, 27, 2441-2444.	4.0	11
105	Deuterium chemistry and airglow in the jovian thermosphere. Icarus, 2006, 183, 451-470.	2.5	11
106	Simultaneous entry of oxygen ions originating from the Sun and Earth into the inner magnetosphere during magnetic storms. Journal of Geophysical Research, 2009, 114, .	3.3	11
107	Shielding an MCP Detector for a Space-Borne Mass Spectrometer Against the Harsh Radiation Environment in Jupiter's Magnetosphere. IEEE Transactions on Nuclear Science, 2017, 64, 605-613.	2.0	11
108	High-purity germanium Gamma-Ray Spectrometer with stirling cycle cryocooler. Advances in Space Research, 2002, 30, 1927-1931.	2.6	10

#	Article	IF	CITATIONS
109	Extended cusp-like regions and their dependence on the Polar orbit, seasonal variations, and interplanetary conditions. Journal of Geophysical Research, 2004, 109, .	3.3	10
110	The application of thin film wavelength-shifting coatings of Perspex to solar energy collection. Journal Physics D: Applied Physics, 1983, 16, 2525-2535.	2.8	9
111	CRRES observations of particle flux dropout events. Advances in Space Research, 1996, 18, 217-228.	2.6	9
112	SMART-1 after lunar capture: First results and perspectives. Journal of Earth System Science, 2005, 114, 689-697.	1.3	9
113	Venusian bow shock as seen by the ASPERAâ€4 ion instrument on Venus Express. Journal of Geophysical Research, 2010, 115, .	3.3	9
114	Cassini Plasma Spectrometer Investigation. , 2004, , 1-112.		9
115	X-Ray Fluorescence Spectrometry of Lunar Surface by XRS Onboard SELENE (Kaguya). Transactions of the Japan Society for Aeronautical and Space Sciences Space Technology Japan, 2009, 7, Tk_39-Tk_42.	0.2	9
116	CRRES/Ground-based multi-instrument observations of an interval of substorm activity. Annales Geophysicae, 1994, 12, 1158-1173.	1.6	8
117	CRRES observations of stormtime ring current ion composition. AIP Conference Proceedings, 1996, , .	0.4	8
118	The D-CIXS X-ray spectrometer, and its capabilities for lunar science. Advances in Space Research, 2002, 30, 1901-1907.	2.6	8
119	Transient Structures and Stream Interaction Regions inÂthe Solar Wind: Results from EISCAT Interplanetary Scintillation, STEREO HI and Venus Express ASPERA-4 Measurements. Solar Physics, 2010, 265, 207-231.	2.5	8
120	Inner magnetospheric heavy ion composition during highâ€speed streamâ€driven storms. Journal of Geophysical Research: Space Physics, 2013, 118, 4066-4079.	2.4	8
121	Twenty-fold increase in thermonuclear reaction yield in laser driven compression. Optics Communications, 1989, 71, 184-188.	2.1	7
122	<title>Cassini plasma spectrometer investigation</title> ., 1996,,.		7
123	Opportunities for X-ray remote sensing at Mercury. Planetary and Space Science, 2001, 49, 1553-1559.	1.7	7
124	Cassini Plasma Spectrometer Investigation. Geophysical Monograph Series, 2013, , 237-242.	0.1	7
125	Multipoint observations of the openâ€closed field line boundary as observed by the Van Allen Probes and geostationary satellites during the 14 November 2012 geomagnetic storm. Journal of Geophysical Research: Space Physics, 2015, 120, 6596-6613.	2.4	7
126	What is the effect of substorms on the ring current ion population during a geomagnetic storm?. Geophysical Monograph Series, 2003, , 75-89.	0.1	6

#	Article	IF	Citations
127	Structure and dynamics of the proton energy density in the inner magnetosphere. Advances in Space Research, 2004, 33, 711-718.	2.6	6
128	Indirect signatures for axion(-like) particles. Journal of Physics: Conference Series, 2006, 39, 103-106.	0.4	6
129	The Pivot Energy of Solar Energetic Particles Affecting the Martian Surface Radiation Environment. Astrophysical Journal Letters, 2019, 883, L12.	8.3	6
130	SMART-1 highlights and relevant studies on early bombardment and geological processes on rocky planets. Physica Scripta, 2008, T130, 014026.	2.5	6
131	Evolution of the ring current ion population, as observed by the CRRES/MICS instrument. AIP Conference Proceedings, 1996, , .	0.4	5
132	Oxygen charge state abundance in the inner magnetosphere. AIP Conference Proceedings, $1996, \ldots$	0.4	5
133	Polar observations of the time-varying cusp. Journal of Geophysical Research, 2001, 106, 19057-19065.	3.3	5
134	Characterisation of swept-charge devices for the Chandrayaan-1 x-ray spectrometer (C1XS) instrument. , 2007, , .		5
135	Survey of dispersionless substorm ion injections observed by CRRES. Advances in Space Research, 1998, 21, 615-618.	2.6	4
136	Predicting Solar Disturbance Effects on Navigation Systems. Journal of Navigation, 1999, 52, 203-216.	1.7	3
137	A comparison between ion characteristics observed by the POLAR and DMSP spacecraft in the high-latitude magnetosphere. Annales Geophysicae, 2004, 22, 1033-1046.	1.6	3
138	Radiation study of swept-charge devices for the Chandrayaan-1 X-ray Spectrometer (C1XS) instrument. Proceedings of SPIE, 2008, , .	0.8	3
139	Correction of Galileo Energetic Particle Detector, Composition Measurement System High Rate Data: Semiconductor Dead Layer Correction. Space Science Reviews, 2020, 216, 1.	8.1	3
140	Superposed Epoch Analysis of Magnetospheric Composition and Dst during Stormtime and Quiet-Time Substorms. Astrophysics and Space Science Library, 1998, , 773-778.	2.7	3
141	X-Ray Laser Research At The Rutherford Laboratory. , 1988, 0831, 270.		2
142	Ring current response to interplanetary magnetic cloud events. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 1999, 24, 83-87.	0.2	2
143	Statistics of substorm occurence in storm and non-storm periods. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 1999, 24, 167-172.	0.2	2
144	Reply [to "Comment on "Current understanding of magnetic storms: Storm-substorm relationships,― by Y. Kamide et al.â€]. Journal of Geophysical Research, 1999, 104, 7051-7051.	3.3	2

#	Article	IF	CITATIONS
145	Cluster/rapid energetic electron observations at the dayside magnetospheric boundary. Advances in Space Research, 2005, 36, 1904-1908.	2.6	2
146	The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission. , 2007, , 113-164.		2
147	X-Ray Laser Research at the Rutherford Appleton Laboratory. Proceedings of SPIE, 1987, , .	0.8	1
148	Assessment Of Multilayer Mirror For XUV Laser Use. , 1988, , .		1
149	Energetic particle acceleration during a major magnetic storm. Advances in Space Research, 2005, 36, 1835-1839.	2.6	1
150	Energetic electron signatures in an active magnetotail plasma sheet. Advances in Space Research, 2006, 38, 1608-1614.	2.6	1
151	In-situ Observations of a Co-rotating Interaction Region at Venus Identified by IPS and STEREO. Solar Physics, 2010, 265, 197-206.	2.5	1
152	The transterminator ion flow at Venus at solar minimum. Planetary and Space Science, 2012, 73, 341-346.	1.7	1
153	Auroral Plasma Acceleration above Martian Magnetic Anomalies. , 2007, , 333-354.		1
154	Imaging Earth's magnetosphere: Measuring energy, mass, and direction of energetic neutral atoms with the ISENA instrument. Geophysical Monograph Series, 1998, , 269-274.	0.1	1
155	Review Of Progress At The UK Central Laser Facility In Developing XUV Lasers Based On Recombining Laser Produced Plasmas. Proceedings of SPIE, 1988, , .	0.8	1
156	A Comparison of DEF X-Ray Film and a Photodiode Array (Reticon) as Detectors for an X-Ray Crystal Spectrometer. Journal of X-Ray Science and Technology, 1989, 1, 162-170.	1.0	0
157	XUV Laser Research At The Rutherford Appleton Laboratory. Proceedings of SPIE, 1989, , .	0.8	O
158	High power laser development and experimental applications to X-ray lasers, and short pulse energy transport. Laser and Particle Beams, 1990, 8, 19-25.	1.0	0
159	Case studies of ion energisation events near substorm onset. Advances in Space Research, 1998, 21, 641-644.	2.6	0
160	Dayside open field line region boundary at high altitudes. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 1999, 24, 129-133.	0.2	0
161	Energetic electron observations of magnetospheric boundaries using the imaging electron spectrometers on Cluster and Polar. Advances in Space Research, 2005, 36, 1916-1921.	2.6	0
162	IMF Direction Derived from Cycloid-Like Ion Distributions Observed by Mars Express., 2007,, 239-266.		0

ARTICLE IF CITATIONS

163 The effects of radiation damage on the spectral resolution of the Chandrayaan-1 x-ray spectrometer., 0