Siegfried Janz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3463009/publications.pdf Version: 2024-02-01

SIECEPIED JANZ

#	Article	IF	CITATIONS
1	Critical Role for Cap-Independent c-MYC Translation in Progression of Multiple Myeloma. Molecular Cancer Therapeutics, 2022, 21, 502-510.	4.1	3
2	NAT10 promotes cell proliferation by acetylating CEP170 mRNA to enhance translation efficiency in multiple myeloma. Acta Pharmaceutica Sinica B, 2022, 12, 3313-3325.	12.0	27
3	Black patients with multiple myeloma have better survival than white patients when treated equally: a matched cohort study. Blood Cancer Journal, 2022, 12, 34.	6.2	22
4	Socioeconomic disadvantage contributes to ethnic disparities in multiple myeloma survival: a matched cohort study. Blood Cancer Journal, 2022, 12, .	6.2	3
5	FOXM1 regulates glycolysis and energy production in multiple myeloma. Oncogene, 2022, 41, 3899-3911.	5.9	16
6	Autonomic nervous system control of multiple myeloma. Blood Reviews, 2021, 46, 100741.	5.7	11
7	Prevalence and significance of sarcopenia in multiple myeloma patients undergoing autologous hematopoietic cell transplantation. Bone Marrow Transplantation, 2021, 56, 225-231.	2.4	17
8	Suppression of steroid 5α-reductase type I promotes cellular apoptosis and autophagy via PI3K/Akt/mTOR pathway in multiple myeloma. Cell Death and Disease, 2021, 12, 206.	6.3	13
9	HNRNPA2B1 promotes multiple myeloma progression by increasing AKT3 expression via m6A-dependent stabilization of ILF3 mRNA. Journal of Hematology and Oncology, 2021, 14, 54.	17.0	75
10	Laboratory Mice – A Driving Force in Immunopathology and Immunotherapy Studies of Human Multiple Myeloma. Frontiers in Immunology, 2021, 12, 667054.	4.8	2
11	CHEK1 and circCHEK1_246aa evoke chromosomal instability and induce bone lesion formation in multiple myeloma. Molecular Cancer, 2021, 20, 84.	19.2	33
12	TRIP13 modulates protein deubiquitination and accelerates tumor development and progression of B cell malignancies. Journal of Clinical Investigation, 2021, 131, .	8.2	10
13	NEK2 Inhibition Enhances the Efficacy of PD-1/PD-L1 Blockade in Multiple Myeloma. Blood, 2021, 138, 2671-2671.	1.4	2
14	Characteristics Associated with Disparities in Survival between Hispanic and Non-Hispanic White Patients with Multiple Myeloma: A Matched Cohort Study. Blood, 2021, 138, 4091-4091.	1.4	0
15	Bispecific CAR-T Cells Targeting Both BCMA and CD24: A Potentially Treatment Approach for Multiple Myeloma. Blood, 2021, 138, 2802-2802.	1.4	4
16	WDR26 and MTF2 are therapeutic targets in multiple myeloma. Journal of Hematology and Oncology, 2021, 14, 203.	17.0	8
17	Identification and Characterization of Tumor-Initiating Cells in Multiple Myeloma. Journal of the National Cancer Institute, 2020, 112, 507-515.	6.3	33
18	Osteolytic disease in IL-6 and Myc dependent mouse model of human myeloma. Haematologica, 2020, 105, e111-e115.	3.5	4

#	Article	IF	CITATIONS
19	Coactivation of NF-κB and Notch signaling is sufficient to induce B-cell transformation and enables B-myeloid conversion. Blood, 2020, 135, 108-120.	1.4	14
20	Trends in the use of therapeutic plasma exchange in multiple myeloma. Journal of Clinical Apheresis, 2020, 35, 307-315.	1.3	4
21	Association of adverse events and associated cost with efficacy for approved relapsed and/or refractory multiple myeloma regimens: A Bayesian network metaâ€analysis of phase 3 randomized controlled trials. Cancer, 2020, 126, 2791-2801.	4.1	6
22	MYC needs MNT to drive B cells over the edge. Blood, 2020, 135, 977-978.	1.4	1
23	Germline Risk Contribution to Genomic Instability in Multiple Myeloma. Frontiers in Genetics, 2019, 10, 424.	2.3	10
24	Chronic intermittent hypoxia enhances disease progression in myeloma-resistant mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R678-R686.	1.8	10
25	Myeloma sleeper agent in myeloid disguise. Blood, 2019, 134, 3-4.	1.4	6
26	Upregulation of FOXM1 in a subset of relapsed myeloma results in poor outcome. Blood Cancer Journal, 2018, 8, 22.	6.2	15
27	New wrinkle on deubiquitination in B-cell lymphoma. Blood, 2018, 132, 2529-2530.	1.4	0
28	Upregulation of FOXM1 leads to diminished drug sensitivity in myeloma. BMC Cancer, 2018, 18, 1152.	2.6	21
29	Mouse model of MYD88L265P-dependent DLBCL. Blood, 2016, 127, 2660-2661.	1.4	1
30	PIAS1 Promotes Lymphomagenesis through MYC Upregulation. Cell Reports, 2016, 15, 2266-2278.	6.4	39
31	FOXM1, CDK6 and Rb Dependent Drug Resistance and Senescence in Myeloma. Blood, 2016, 128, 4456-4456.	1.4	1
32	Cancer stem cells are the cause of drug resistance in multiple myeloma: fact or fiction?. Oncotarget, 2015, 6, 40496-40506.	1.8	42
33	Bruton Tyrosine Kinase Is a Therapeutic Target in Stem-like Cells from Multiple Myeloma. Cancer Research, 2015, 75, 594-604.	0.9	65
34	RIP1 Cleavage in the Kinase Domain Regulates TRAIL-Induced NF-κB Activation and Lymphoma Survival. Molecular and Cellular Biology, 2015, 35, 3324-3338.	2.3	28
35	CDKN1A and FANCD2 are potential oncotargets in Burkitt lymphoma and multiple myeloma. Experimental Hematology and Oncology, 2015, 4, 9.	5.0	12
36	NIAM-Deficient Mice Are Predisposed to the Development of Proliferative Lesions including B-Cell Lymphomas. PLoS ONE, 2014, 9, e112126.	2.5	7

#	Article	IF	CITATIONS
37	A new model of LMP1–MYC interaction in B cell lymphoma. Leukemia and Lymphoma, 2014, 55, 2917-2923.	1.3	5
38	Forkhead Box M1 Regulates Quiescence-Associated Radioresistance of Human Head and Neck Squamous Carcinoma Cells. Radiation Research, 2014, 182, 420.	1.5	21
39	Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma. Immunologic Research, 2014, 59, 188-202.	2.9	57
40	NEK2 mediates ALDH1A1-dependent drug resistance in multiple myeloma. Oncotarget, 2014, 5, 11986-11997.	1.8	54
41	Piperlongumine inhibits LMP1/MYC-dependent mouse B-lymphoma cells. Biochemical and Biophysical Research Communications, 2013, 436, 660-665.	2.1	26
42	Piperlongumine inhibits proliferation and survival of Burkitt lymphoma in vitro. Leukemia Research, 2013, 37, 146-154.	0.8	56
43	Profiling Bortezomib Resistance Identifies Secondary Therapies in a Mouse Myeloma Model. Molecular Cancer Therapeutics, 2013, 12, 1140-1150.	4.1	68
44	Waldenström Macroglobulinemia: Clinical and Immunological Aspects, Natural History, Cell of Origin, and Emerging Mouse Models. ISRN Hematology, 2013, 2013, 1-25.	1.6	23
45	Identification of Candidate B-Lymphoma Genes by Cross-Species Gene Expression Profiling. PLoS ONE, 2013, 8, e76889.	2.5	13
46	Characterization of ARF-BP1/HUWE1 Interactions with CTCF, MYC, ARF and p53 in MYC-Driven B Cell Neoplasms. International Journal of Molecular Sciences, 2012, 13, 6204-6219.	4.1	27
47	Global gene expression profiling in mouse plasma cell tumor precursor and bystander cells reveals potential intervention targets for plasma cell neoplasia. Blood, 2012, 119, 1018-1028.	1.4	6
48	HHV-8–encoded viral IL-6 collaborates with mouse IL-6 in the development of multicentric Castleman disease in mice. Blood, 2012, 119, 5173-5181.	1.4	110
49	Antitumor Activity of the Investigational Proteasome Inhibitor MLN9708 in Mouse Models of B-cell and Plasma Cell Malignancies. Clinical Cancer Research, 2011, 17, 7313-7323.	7.0	101
50	IL-6 and MYC collaborate in plasma cell tumor formation in mice. Blood, 2010, 115, 1746-1754.	1.4	49
51	Anaplastic plasmacytoma of mouse—establishing parallels between subtypes of mouse and human plasma cell neoplasia. Journal of Pathology, 2010, 221, 242-247.	4.5	3
52	B-cell activating factor and v-Myc myelocytomatosis viral oncogene homolog (c-Myc) influence progression of chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18956-18960.	7.1	64
53	NF-κB/STAT3/PI3K signaling crosstalk in iMycEμ B lymphoma. Molecular Cancer, 2010, 9, 97.	19.2	99
54	Prevalence and frequency of circulating t(14;18)â€MBR translocation carrying cells in healthy individuals. International Journal of Cancer, 2009, 124, 958-963.	5.1	82

#	Article	IF	CITATIONS
55	MLN9708 Elicits Pharmacodynamic Response in the Bone Marrow Compartment and Has Strong Antitumor Activity in a Preclinical Intraosseous Model of Plasma Cell Malignancy Blood, 2009, 114, 1834-1834.	1.4	1
56	Evaluating the Antitumor Activity of MLN9708 in a Disseminated Mouse Model of Double Transgenic iMyc Ca/Bcl-XL Plasma Cell Malignancy Blood, 2009, 114, 3835-3835.	1.4	2
57	The Novel Proteasome Inhibitor MLN9708 Demonstrates Efficacy in a Genetically-Engineered Mouse Model of DeNovo Plasma Cell Malignancy Blood, 2009, 114, 3849-3849.	1.4	1
58	Response to Guglielmi et al., "The 3′IgH regulatory region is active at immature stages of Bâ€cell development― Genes Chromosomes and Cancer, 2008, 47, 94-94.	2.8	0
59	Genetic and Environmental Cofactors of Myc Translocations in Plasma Cell Tumor Development in Mice. Journal of the National Cancer Institute Monographs, 2008, 2008, 37-40.	2.1	7
60	Deregulation of c-Myc Confers Distinct Survival Requirements for Memory B Cells, Plasma Cells, and Their Progenitors. Journal of Immunology, 2008, 181, 7537-7549.	0.8	24
61	t(14;18) Translocations and Risk of Follicular Lymphoma. Journal of the National Cancer Institute Monographs, 2008, 2008, 48-51.	2.1	23
62	Overview of Mechanisms and Consequences of Chromosomal Translocation. Journal of the National Cancer Institute Monographs, 2008, 2008, 1-1.	2.1	4
63	Mouse Models of Human Mature B-Cell and Plasma Cell Neoplasms. , 2008, , 179-225.		3
64	IL-6 and Tumor Susceptibility Alleles of Strain BALB/C Cause Phenotypic Shift of MYC-Driven Lymphomas in Mice from Diffuse Large B-Cell Lymphoma (DLBCL) to Plasmacytoma (PCT). Blood, 2008, 112, 5316-5316.	1.4	0
65	A Transgenic Mouse Model of Plasma Cell Malignancy Shows Phenotypic, Cytogenetic, and Gene Expression Heterogeneity Similar to Human Multiple Myeloma. Cancer Research, 2007, 67, 4069-4078.	0.9	43
66	Regulation of AID expression in the immune response. Journal of Experimental Medicine, 2007, 204, 1145-1156.	8.5	229
67	AID-deficient Bcl-xL transgenic mice develop delayed atypical plasma cell tumors with unusual Ig/Myc chromosomal rearrangements. Journal of Experimental Medicine, 2007, 204, 2989-3001.	8.5	45
68	Anaplastic, Plasmablastic, and Plasmacytic Plasmacytomas of Mice: Relationships to Human Plasma Cell Neoplasms and Late-Stage Differentiation of Normal B Cells. Cancer Research, 2007, 67, 2439-2447.	0.9	26
69	Attenuation of WNT signaling by DKK-1 and -2 regulates BMP2-induced osteoblast differentiation and expression of OPG, RANKL and M-CSF. Molecular Cancer, 2007, 6, 71.	19.2	155
70	In a model of immunoglobulin heavyâ€chain (<i>IGH</i>)/ <i>MYC</i> translocation, the <i>Igh</i> 3′ regulatory region induces <i>MYC</i> expression at the immature stage of B cell development. Genes Chromosomes and Cancer, 2007, 46, 950-959.	2.8	15
71	Distribution of t(14;18)-positive, putative lymphoma precursor cells among B-cell subsets in healthy individuals. British Journal of Haematology, 2007, 138, 349-353.	2.5	33
72	Gene expression profiling reveals different pathways related to Abl and other genes that cooperate with c-Myc in a model of plasma cell neoplasia. BMC Genomics, 2007, 8, 302.	2.8	9

#	Article	IF	CITATIONS
73	CDDO-Imidazolide inhibits growth and survival of c-Myc-induced mouse B cell and plasma cell neoplasms. Molecular Cancer, 2006, 5, 22.	19.2	14
74	Myc translocations in B cell and plasma cell neoplasms. DNA Repair, 2006, 5, 1213-1224.	2.8	92
75	Distinct MYC thresholds in hematopoietic neoplasia. Blood, 2006, 108, 413-413.	1.4	0
76	TCL1-induced germinal center B lymphomas in mice. Blood, 2006, 108, 1791-1792.	1.4	0
77	Deregulated expression of the Myc cellular oncogene drives development of mouse "Burkitt-like― lymphomas from naive B cells. Blood, 2005, 105, 2135-2137.	1.4	38
78	Uncovering MYC's full oncogenic potential in the hematopoietic system. Oncogene, 2005, 24, 3541-3543.	5.9	10
79	Location ofMyc,Igh, andIgk on Robertsonian fusion chromosomes is inconsequential forMyc translocations and plasmacytoma development in mice, but Rb(6.15)-carrying tumors preferIgk-Myc inversions over translocations. Genes Chromosomes and Cancer, 2005, 42, 416-426.	2.8	6
80	Extraosseous IL-6 transgenic mouse plasmacytoma sometimes lacksMyc-activating chromosomal translocation. Genes Chromosomes and Cancer, 2005, 43, 137-146.	2.8	7
81	Insertion of <i>Myc</i> into <i>Igh</i> Accelerates Peritoneal Plasmacytomas in Mice. Cancer Research, 2005, 65, 7644-7652.	0.9	24
82	Insertion of c-Myc into Igh Induces B-Cell and Plasma-Cell Neoplasms in Mice. Cancer Research, 2005, 65, 1306-1315.	0.9	105
83	Molecular and cytological features of the mouse B-cell lymphoma line iMycEmu-1. Molecular Cancer, 2005, 4, 40.	19.2	6
84	Dkk1 Transgenic Mice for the Study of Bone Lesions in Human Multiple Myeloma Blood, 2005, 106, 2505-2505.	1.4	0
85	Selenium Deficiency Abrogates Inflammation-Dependent Plasma Cell Tumors in Mice. Cancer Research, 2004, 64, 2910-2917.	0.9	35
86	Moderate Hypermutability of a Transgenic lacZ Reporter Gene in Myc-Dependent Inflammation-Induced Plasma Cell Tumors in Mice. Cancer Research, 2004, 64, 530-537.	0.9	6
87	Elevated presence of retrotransposons at sites of DNA double strand break repair in mouse models of metabolic oxidative stress and MYC-induced lymphoma. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 548, 117-125.	1.0	23
88	Novel targeted deregulation of c-Myc cooperates with Bcl-XL to cause plasma cell neoplasms in mice. Journal of Clinical Investigation, 2004, 113, 1763-1773.	8.2	84
89	Novel targeted deregulation of c-Myc cooperates with Bcl-XL to cause plasma cell neoplasms in mice. Journal of Clinical Investigation, 2004, 113, 1763-1773.	8.2	70
90	Bcl-2 reduces mutant rates in a transgenic lacZ reporter gene in mouse pre-B lymphocytes. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 522, 135-144.	1.0	2

#	Article	IF	CITATIONS
91	Paradoxical decrease in mutant frequencies and chromosomal rearrangements in a transgenic lacZ reporter gene in Ku80 null mice deficient in DNA double strand break repair. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 529, 51-58.	1.0	14
92	Lymphoma―and leukemiaâ€associated chromosomal translocations in healthy individuals. Genes Chromosomes and Cancer, 2003, 36, 211-223.	2.8	136
93	Eμ/Sμ transposition into Myc is sometimes a precursor for T(12;15) translocation in mouse B cells. Oncogene, 2003, 22, 2842-2850.	5.9	6
94	COMBO-FISH: specific labeling of nondenatured chromatin targets by computer-selected DNA oligonucleotide probe combinations. BioTechniques, 2003, 35, 564-577.	1.8	47
95	BCL2 accelerates inflammation-induced BALB/c plasmacytomas and promotes novel tumors with coexisting T(12;15) and T(6;15) translocations. Cancer Research, 2003, 63, 8656-63.	0.9	26
96	IL-6 transgenic mouse model for extraosseous plasmacytoma. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1509-1514.	7.1	123
97	Transgenic Shuttle Vector Assays for Determining Genetic Differences in Oxidative B Cell Mutagenesis in Vivo. Methods in Enzymology, 2002, 353, 434-448.	1.0	3
98	Moderate G6PD deficiency increases mutation rates in the brain of mice. Free Radical Biology and Medicine, 2002, 32, 663-673.	2.9	20
99	Isotype switch-mediatedCH deletions are a recurrent feature ofMyc/CH translocations in peritoneal plasmacytomas in mice. International Journal of Cancer, 2002, 101, 423-426.	5.1	5
100	Genomic instability in mouse Burkitt lymphoma is dominated by illegitimate genetic recombinations, not point mutations. Oncogene, 2002, 21, 7235-7240.	5.9	26
101	Non-Hodgkin Lymphomas of Mice. Blood Cells, Molecules, and Diseases, 2001, 27, 217-222.	1.4	11
102	Translocation remodeling in the primary BALB/c plasmacytoma TEPC 3610. Genes Chromosomes and Cancer, 2001, 30, 283-291.	2.8	9
103	Conformational differences in the 3-D nanostructure of the immunoglobulin heavy-chain locus, a hotspot of chromosomal translocations in B lymphocytes. Cancer Genetics and Cytogenetics, 2001, 127, 168-173.	1.0	24
104	Chromosomes 1 and 5 harbor plasmacytoma progressor genes in mice. Genes Chromosomes and Cancer, 2000, 29, 70-74.	2.8	12
105	Burkitt Lymphoma in the Mouse. Journal of Experimental Medicine, 2000, 192, 1183-1190.	8.5	195
106	Jumping Translocation Breakpoint Regions Lead to Amplification of Rearranged Myc. Blood, 1999, 93, 4442-4444.	1.4	13
107	Deletional remodeling of c-myc-deregulating chromosomal translocations. Oncogene, 1997, 15, 2369-2377.	5.9	46
108	Elevated mutant frequencies in genelacl in splenic lipopolysaccharide blasts after exposure to activated phagocytesin vitro. European Journal of Immunology, 1997, 27, 2160-2164.	2.9	4

#	Article	IF	CITATIONS
109	Migration of Cells With Immunoglobulin/c-myc Recombinations in Lymphoid Tissues of Mice. Blood, 1997, 89, 291-296.	1.4	3
110	DNA sequence analysis of the genetIc recombination betweenIgh6 andMyc In an uncommon BALB/c plasmacytoma, TEPC 1194. Immunogenetics, 1996, 44, 151-156.	2.4	6
111	Multicolour spectral karyotyping of mouse chromosomes. Nature Genetics, 1996, 14, 312-315.	21.4	307
112	DNA sequence analysis of the genetic recombination between Igh6 and Myc in an uncommon BALB/c plasmacytoma, TEPC 1194. Immunogenetics, 1996, 44, 151-156.	2.4	0
113	Completion of the DNA sequence determination of the lgh2 locus of the mouse: the 5?-IA region. Immunogenetics, 1995, 43, 101-4.	2.4	1
114	Modulation of the H2O2-induced SOS response in escherichia coli PQ300 by amino acids, metal chelators, antioxidants, and scavengers of reactive oxygen species. Environmental and Molecular Mutagenesis, 1993, 22, 157-163.	2.2	22
115	Assessment of oxidative DNA damage in theoxyR-deficient sos chromotest strainescherichia coli PQ300. Environmental and Molecular Mutagenesis, 1992, 20, 297-306.	2.2	14