Oleg BabÄenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3462313/publications.pdf

Version: 2024-02-01

63 1,001 18 28 papers citations h-index g-index

64 64 64 1143
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Coating Ti6Al4V implants with nanocrystalline diamond functionalized with BMP-7 promotes extracellular matrix mineralization in vitro and faster osseointegration in vivo. Scientific Reports, 2022, 12, 5264.	3.3	13
2	Human osteoblast-like SAOS-2 cells on submicron-scale fibers coated with nanocrystalline diamond films. Materials Science and Engineering C, 2021, 121, 111792.	7.3	21
3	Influence of SiON interlayer on the diamond/GaN heterostructures studied by Raman and SIMS measurements. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115434.	3.5	O
4	3D printing materials for generators of active particles based on electrical discharges. Plasma Processes and Polymers, 2020, 17, 1900150.	3.0	4
5	Effect of a diamond layer on the active electrode on the ozone generation of the dielectric barrier discharge in air. Journal Physics D: Applied Physics, 2020, 53, 275203.	2.8	5
6	GROWTH AND PROPERTIES OF DIAMOND FILMS PREPARED ON 4-INCH SUBSTRATES BY CAVITY PLASMA SYSTEMs. , 2020, , .		0
7	Optimization of diamond growth on structured, soft and brittle substrates. , 2020, , .		O
8	Great Variety of Man-Made Porous Diamond Structures: Pulsed Microwave Cold Plasma System with a Linear Antenna Arrangement. ACS Omega, 2019, 4, 8441-8450.	3.5	17
9	Carbide-free one-zone sulfurization method grows thin MoS2 layers on polycrystalline CVD diamond. Scientific Reports, 2019, 9, 2001.	3.3	19
10	Black Titanium Dioxide in Situ Generated on Femtosecond Laser Induced Periodic Surface Structures. , 2018, , .		0
11	Study on electronic properties of diamond/SiNx-coated AlGaN/GaN high electron mobility transistors operating up to 500â€Â°C. Diamond and Related Materials, 2018, 89, 266-272.	3.9	9
12	Stability of AlGaN/GaN heterostructures after hydrogen plasma treatment. Applied Surface Science, 2017, 395, 92-97.	6.1	7
13	Ir/Al multilayer Gates for High Temperature Operated AlGaN/GaN HEMTs. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700691.	1.8	3
14	Schottky contact metallization stability on AlGaN/GaN heterostructure during the diamond deposition process. , 2016, , .		0
15	Strain induced response of AlGaN/GaN high electron mobility transistor located on cantilever and membrane. , $2016, , .$		1
16	Preparation and optical properties of nanocrystalline diamond coatings for infrared planar waveguides. Thin Solid Films, 2016, 618, 130-133.	1.8	23
17	Nanocarbon Allotropes-Graphene and Nanocrystalline Diamond-Promote Cell Proliferation. Small, 2016, 12, 2499-2509.	10.0	27
18	Fabrication of diamond-coated germanium ATR prisms for IR-spectroscopy. Vibrational Spectroscopy, 2016, 84, 67-73.	2.2	3

#	Article	IF	CITATIONS
19	Gamma radiation effects on hydrogen-terminated nanocrystalline diamond bio-transistors. Diamond and Related Materials, 2016, 63, 186-191.	3.9	5
20	Technological Aspects in Fabrication of Micro- and Nano-Sized Carbon Based Features: Nanorods, Periodical Arrays and Self-Standing Membranes. Journal of Electrical Engineering, 2015, 66, 282-286.	0.7	3
21	Diamond-coated three-dimensional GaN micromembranes: Effect of nucleation and deposition techniques. Physica Status Solidi (B): Basic Research, 2015, 252, 2585-2590.	1.5	7
22	Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films. International Journal of Nanomedicine, 2015, 10, 869.	6.7	41
23	Influence of surface wave plasma deposition conditions on diamond growth regime. Surface and Coatings Technology, 2015, 271, 74-79.	4.8	12
24	Investigation of residual stress in structured diamond films grown on silicon. Thin Solid Films, 2015, 589, 857-863.	1.8	14
25	HYDRATION OF PLASMA-TREATED ALUMOSILICATE BINDERS. Acta Polytechnica, 2014, 54, 348-351.	0.6	0
26	Electrical characterization of diamond films deposited in nitrogen and oxygen containing gas mixture. , 2014, , .		0
27	Growth of carbon allotropes and plasma characterization in linear antenna microwave plasma CVD system. Japanese Journal of Applied Physics, 2014, 53, 05FP04.	1.5	2
28	Selective area deposition of diamond films on AlGaN/GaN heterostructures. Physica Status Solidi (B): Basic Research, 2014, 251, 2574-2580.	1.5	15
29	Nanostructured Diamond Layers Enhance the Infrared Spectroscopy of Biomolecules. Langmuir, 2014, 30, 2054-2060.	3. 5	11
30	Structural and electrical characterization of diamond films deposited in nitrogen/oxygen containing gas mixture by linear antenna microwave CVD process. Applied Surface Science, 2014, 312, 226-230.	6.1	11
31	Diamond growth on copper rods from polymer composite nanofibres. Applied Surface Science, 2014, 312, 220-225.	6.1	9
32	Optically transparent diamond–PDMS microfluidic system for electronic monitoring of cells. Physica Status Solidi (B): Basic Research, 2014, 251, 2593-2598.	1.5	7
33	Diamond-coated ATR prism for infrared absorption spectroscopy of surface-modified diamond nanoparticles. Applied Surface Science, 2013, 270, 411-417.	6.1	17
34	Diamond nucleation and seeding techniques for tissue regeneration., 2013,, 206-255.		6
35	Perspectives of linear antenna microwave system for growth of various carbon nano-forms and its plasma study. Physica Status Solidi (B): Basic Research, 2013, 250, 2723-2726.	1.5	16
36	Tailoring morphologies of diamond thin films for neural stem cells culturing. Physica Status Solidi (B): Basic Research, 2013, 250, 2717-2722.	1.5	9

#	Article	IF	Citations
37	Diamond photonic crystal slab: Leaky modes and modified photoluminescence emission of surface-deposited quantum dots. Scientific Reports, 2012, 2, 914.	3.3	19
38	Low temperature diamond growth by linear antenna plasma CVD over large area. Physica Status Solidi (B): Basic Research, 2012, 249, 2600-2603.	1.5	44
39	Linear antenna microwave plasma CVD diamond deposition at the edge of noâ€growth region of CHO ternary diagram. Physica Status Solidi (B): Basic Research, 2012, 249, 2612-2615.	1.5	20
40	Optical study of defects in nanoâ€diamond films grown in linear antenna microwave plasma CVD from H ₂ /CH ₄ /CO ₂ gas mixture. Physica Status Solidi (B): Basic Research, 2012, 249, 2635-2639.	1.5	18
41	Nanomolar Hydrogen Peroxide Detection Using Horseradish Peroxidase Covalently Linked to Undoped Nanocrystalline Diamond Surfaces. Langmuir, 2012, 28, 587-592.	3.5	48
42	Linear antenna microwave plasma CVD deposition of diamond films over large areas. Vacuum, 2012, 86, 776-779.	3. 5	89
43	Design and fabrication of piezoresistive strain gauges based on nanocrystalline diamond layers. Vacuum, 2012, 86, 689-692.	3.5	22
44	Comparative study on dry etching of polycrystalline diamond thin films. Vacuum, 2012, 86, 799-802.	3. 5	26
45	Direct growth of sub-micron diamond structures. Vacuum, 2012, 86, 693-695.	3.5	11
46	Effective Extraction of Photoluminescence from a Diamond Layer with a Photonic Crystal. ACS Nano, 2011, 5, 346-350.	14.6	26
47	Grazing angle reflectance spectroscopy of organic monolayers on nanocrystalline diamond films. Diamond and Related Materials, 2011, 20, 882-885.	3.9	13
48	Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential. Applied Physics Letters, 2011, 98, .	3.3	92
49	Deposition of nanocrystalline diamond films on temperature sensitive substrates for infrared reflectance spectroscopy. Physica Status Solidi (B): Basic Research, 2011, 248, 2736-2739.	1.5	12
50	Controlled oxygen plasma treatment of single-walled carbon nanotube films improves osteoblastic cells attachment and enhances their proliferation. Carbon, 2011, 49, 2926-2934.	10.3	25
51	Enhanced photoluminescence extraction efficiency from a diamond photonic crystal via leaky modes. New Journal of Physics, 2011, 13, 063005.	2.9	14
52	Fabrication of diamond nanorods for gas sensing applications. Applied Surface Science, 2010, 256, 5602-5605.	6.1	21
53	The optical absorption of metal nanoparticles deposited on ZnO films. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1722-1725.	1.8	8
54	Toward surfaceâ€friendly treatment of seeding layer and selectedâ€area diamond growth. Physica Status Solidi (B): Basic Research, 2010, 247, 3026-3029.	1.5	20

Oleg BabĀnko

#	Article	IF	CITATIONS
55	Directly Grown Nanocrystalline Diamond Field-Effect Transistor Microstructures. Sensor Letters, 2010, 8, 482-487.	0.4	17
56	Fabrication of nanoâ€structured diamond films for SAOSâ€2 cell cultivation. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2033-2037.	1.8	13
57	Study on cellular adhesion of human osteoblasts on nanoâ€structured diamond films. Physica Status Solidi (B): Basic Research, 2009, 246, 2774-2777.	1.5	18
58	Role of polymers in CVD growth of nanocrystalline diamond films on foreign substrates. Physica Status Solidi (B): Basic Research, 2009, 246, 2654-2657.	1.5	17
59	Simplified procedure for patterned growth of nanocrystalline diamond micro-structures. Thin Solid Films, 2009, 518, 343-347.	1.8	17
60	Nanocrystalline diamond piezoresistive sensor. Vacuum, 2009, 84, 53-56.	3.5	18
61	Nanostructuring of diamond films using self-assembled nanoparticles. Open Physics, 2009, 7, .	1.7	11
62	Design and characterization of NCD piezoresistive strain sensor. , 2009, , .		1
63	Seeding of polymer substrates for nanocrystalline diamond film growth. Diamond and Related Materials, 2009, 18, 734-739.	3.9	24