
Slobodan P Simonovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/34621/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatio-Temporal Heterogeneity of Climate Warming in the Chinese Tianshan Mountainous Region. Water (Switzerland), 2022, 14, 199.	2.7	7
2	ANEMI_Yangtze v1.0: a coupled human–natural systems model for the Yangtze Economic Belt – model description. Geoscientific Model Development, 2022, 15, 4503-4528.	3.6	3
3	Parametric Vine Copula Framework in the Trivariate Probability Analysis of Compound Flooding Events. Water (Switzerland), 2022, 14, 2214.	2.7	10
4	Understanding dynamics of population flood exposure in Canada with multiple high-resolution population datasets. Science of the Total Environment, 2021, 759, 143559.	8.0	29
5	Fidelity of reanalysis datasets in floodplain mapping: Investigating performance at inundation level over large regions. Journal of Hydrology, 2021, 597, 125757.	5.4	8
6	Introducing Non-Stationarity Into the Development of Intensity-Duration-Frequency Curves under a Changing Climate. Water (Switzerland), 2021, 13, 1008.	2.7	13
7	IWRA 50th anniversary interview. Water International, 2021, 46, 299-302.	1.0	0
8	Assessment of non-stationary IDF curves under a changing climate: Case study of different climatic zones in Canada. Journal of Hydrology: Regional Studies, 2021, 36, 100870.	2.4	8
9	Simulation of the ice thickness of the Heilongjiang River and application of SD models to a river ice model. Hydrology Research, 2021, 52, 1261-1279.	2.7	2
10	Identification of flood seasonality and drivers across Canada. Hydrological Processes, 2021, 35, e14398.	2.6	3
11	Floods and the <scp>COVID</scp> â€19 pandemic—A new double hazard problem. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1509.	6.5	65
12	What are the main challenges facing the sustainable development of China's Yangtze economic belt in the future? An integrated view. Environmental Research Communications, 2021, 3, 115005.	2.3	6
13	Systems approach and performance-based water resources management. Water International, 2021, 46, 1224-1235.	1.0	3
14	The Role of Water Supply Development in the Earth System. Water (Switzerland), 2020, 12, 3349.	2.7	10
15	Application of the Systems Approach to the Management of Complex Water Systems. Water (Switzerland), 2020, 12, 2923.	2.7	4
16	System Dynamics Simulation Model for Flood Management of the Three Gorges Reservoir. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	2.6	8
17	Web-Based Tool for the Development of Intensity Duration Frequency Curves under Changing Climate at Gauged and Ungauged Locations. Water (Switzerland), 2020, 12, 1243.	2.7	25
18	Risk and Resilience: A Case of Perception versus Reality in Flood Management. Water (Switzerland), 2020, 12, 1254.	2.7	14

#	Article	IF	CITATIONS
19	Role of Cluster Validity Indices in Delineation of Precipitation Regions. Water (Switzerland), 2020, 12, 1372.	2.7	4
20	Performance and uncertainty analysis of a short-term climate reconstruction based on multi-source data in the Tianshan Mountains region, China. Journal of Arid Land, 2020, 12, 374-396.	2.3	4
21	Gridded Extreme Precipitation Intensity–Duration–Frequency Estimates for the Canadian Landmass. Journal of Hydrologic Engineering - ASCE, 2020, 25, 05020006.	1.9	7
22	A Deterministic Monte Carlo Simulation Framework for Dam Safety Flow Control Assessment. Water (Switzerland), 2020, 12, 505.	2.7	8
23	Understanding the Uncertainty of the Lim River Basin Response to Changing Climate. Journal of Hydrologic Engineering - ASCE, 2020, 25, 05020023.	1.9	1
24	Systems Approach to Management of Water Resources—Toward Performance Based Water Resources Engineering. Water (Switzerland), 2020, 12, 1208.	2.7	15
25	A system dynamics simulation approach for environmentally friendly operation of a reservoir system. Journal of Hydrology, 2020, 587, 124971.	5.4	25
26	System Dynamics Approach for Assessing the Behaviour of the Lim Reservoir System (Serbia) under Changing Climate Conditions. Water (Switzerland), 2019, 11, 1620.	2.7	15
27	A Two-Stage Restoration Resource Allocation Model for Enhancing the Resilience of Interdependent Infrastructure Systems. Sustainability, 2019, 11, 5143.	3.2	21
28	A Combinatorial Procedure to Determine the Full Range of Potential Operating Scenarios for a Dam System. Water Resources Management, 2019, 33, 1451-1466.	3.9	7
29	Flooding Related Consequences of Climate Change on Canadian Cities and Flow Regulation Infrastructure. Water (Switzerland), 2019, 11, 63.	2.7	14
30	Mixed General Extreme Value Distribution for Estimation of Future Precipitation Quantiles Using a Weighted Ensemble - Case Study of the Lim River Basin (Serbia). Water Resources Management, 2019, 33, 2885-2906.	3.9	7
31	Future realities of climate change impacts: an integrated assessment study of Canada. International Journal of Global Warming, 2019, 17, 59.	0.5	10
32	Resilience Assessment of Interdependent Infrastructure Systems: A Case Study Based on Different Response Strategies. Sustainability, 2019, 11, 6552.	3.2	33
33	Sequential Hazards Resilience of Interdependent Infrastructure System: A Case Study of Greater Toronto Area Energy Infrastructure System. Risk Analysis, 2019, 39, 1141-1168.	2.7	35
34	Introduction to Physical Scaling. , 2019, , 199-273.		5
35	Use of quantitative resilience in managing urban infrastructure response to natural hazards. International Journal of Safety and Security Engineering, 2019, 9, 13-25.	1.0	4
36	Wastewater Treatment Energy Recovery Potential For Adaptation To Global Change: An Integrated Assessment. Environmental Management, 2018, 61, 624-636.	2.7	13

#	Article	IF	CITATIONS
37	Restoration resource allocation model for enhancing resilience of interdependent infrastructure systems. Safety Science, 2018, 102, 169-177.	4.9	56
38	Future Changes in Flood Hazards across Canada under a Changing Climate. Water (Switzerland), 2018, 10, 1441.	2.7	30
39	Comparison of the Theoretical Clausius–Clapeyron Scaling and <i>IDF_CC</i> Tool for Updating Intensity-Duration-Frequency Curves under Changing Climatic Conditions in Canada. Journal of Hydrologic Engineering - ASCE, 2018, 23, .	1.9	3
40	Modeling joint restoration strategies for interdependent infrastructure systems. PLoS ONE, 2018, 13, e0195727.	2.5	19
41	MODELLING OF FUTURE FLOOD RISK ACROSS CANADA DUE TO CLIMATE CHANGE. WIT Transactions on Engineering Sciences, 2018, , .	0.0	3
42	Delineation of precipitation regions using location and atmospheric variables in two Canadian climate regions: the role of attribute selection. Hydrological Sciences Journal, 2017, 62, 191-204.	2.6	9
43	Bringing Future Climatic Change into Water Resources Management Practice Today. Water Resources Management, 2017, 31, 2933-2950.	3.9	31
44	Quantification of uncertainty in the assessment of future streamflow under changing climate conditions. Hydrological Processes, 2017, 31, 2076-2094.	2.6	26
45	Delineation of precipitation regions in two Canadian study areas: the role of the temporal resolution of the precipitation data. Hydrological Sciences Journal, 2017, 62, 2061-2071.	2.6	1
46	Mapping Extreme Rainfall Statistics for Canada under Climate Change Using Updated Intensity-Duration-Frequency Curves. Journal of Water Resources Planning and Management - ASCE, 2017, 143, .	2.6	20
47	ResilSIM—A Decision Support Tool for Estimating Resilience of Urban Systems. Water (Switzerland), 2016, 8, 377.	2.7	19
48	A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System. Water Resources Management, 2016, 30, 3363-3387.	3.9	38
49	Use of beta regression for statistical downscaling of precipitation in the Campbell River basin, British Columbia, Canada. Journal of Hydrology, 2016, 538, 49-62.	5.4	38
50	A web-based tool for the development of Intensity Duration Frequency curves under changing climate. Environmental Modelling and Software, 2016, 81, 136-153.	4.5	72
51	A decision support system for updating and incorporating climate change impacts into rainfall intensity-duration-frequency curves: Review of the stakeholder involvement process. Environmental Modelling and Software, 2016, 84, 193-209.	4.5	36
52	Sixth International Conference on Flood Management (ICFM6): Floods in a changing environment, part 2. Journal of Flood Risk Management, 2016, 9, 309-309.	3.3	0
53	Sixth International Conference on Flood Management (ICFM6): Floods in a changing environment, part 1. Journal of Flood Risk Management, 2016, 9, 195-195.	3.3	0
54	Comparison of static and dynamic resilience for a multipurpose reservoir operation. Water Resources Research, 2016, 52, 8630-8649.	4.2	70

#	Article	IF	CITATIONS
55	Uncertainty in Precipitation Projection under Changing Climate Conditions: A Regional Case Study. American Journal of Climate Change, 2016, 05, 116-132.	0.9	21
56	Multi-method Modeling Framework for Support of Integrated Water Resources Management. Environmental Processes, 2015, 2, 461-483.	3.5	36
57	Improved Weather Generator Algorithm for Multisite Simulation ofÂPrecipitation and Temperature. Journal of the American Water Resources Association, 2015, 51, 1305-1320.	2.4	28
58	Coupled Self-Adaptive Multiobjective Differential Evolution and Network Flow Algorithm Approach for Optimal Reservoir Operation. Journal of Water Resources Planning and Management - ASCE, 2015, 141, .	2.6	28
59	System dynamics and hydrodynamic modelling approaches for spatial and temporal analysis of flood risk. International Journal of River Basin Management, 2015, 13, 443-461.	2.7	12
60	Towards Reducing Climate Change Impact Assessment Process Uncertainty. Environmental Processes, 2015, 2, 275-290.	3.5	24
61	Multi-site, multivariate weather generator using maximum entropy bootstrap. Climate Dynamics, 2015, 44, 3431-3448.	3.8	27
62	Simulation of historical temperatures using a multi-site, multivariate block resampling algorithm with perturbation. Hydrological Processes, 2014, 28, 905-912.	2.6	16
63	A flood risk assessment to municipal infrastructure due to changing climate part I: methodology. Urban Water Journal, 2014, 11, 20-30.	2.1	20
64	Interaction between land-use change, flooding and human health in Metro Vancouver, Canada. Natural Hazards, 2014, 72, 1219-1230.	3.4	32
65	A flood risk assessment to municipal infrastructure due to changing climate part II: case study. Urban Water Journal, 2014, 11, 519-531.	2.1	7
66	Simulation of Multiple Hydropower Reservoir Operations Using System Dynamics Approach. Water Resources Management, 2014, 28, 1937-1958.	3.9	28
67	Equidistance Quantile Matching Method for Updating IDFCurves under Climate Change. Water Resources Management, 2014, 28, 2539-2562.	3.9	92
68	An analytical procedure for multi-site, multi-season streamflow generation using maximum entropy bootstrapping. Environmental Modelling and Software, 2014, 59, 59-75.	4.5	35
69	Integrated assessment model of society-biosphere-climate-economy-energy system. Environmental Modelling and Software, 2013, 49, 1-21.	4.5	52
70	Analytical Support for Integrated Water Resources Management: A New Method for Addressing Spatial and Temporal Variability. Water Resources Management, 2013, 27, 401-417.	3.9	38
71	Fuzzy multiobjective models for optimal operation of a hydropower system. Water Resources Research, 2013, 49, 3180-3193.	4.2	19
72	Evaluation and application of Fuzzy Differential Evolution approach for benchmark optimization and reservoir operation problems. Journal of Hydroinformatics, 2013, 15, 1456-1473.	2.4	6

#	Article	IF	CITATIONS
73	Spatial and temporal analysis of urban flood risk assessment. Urban Water Journal, 2013, 10, 26-49.	2.1	47
74	Dynamic Resilience to Climate Change Caused Natural Disasters in Coastal Megacities Quantification Framework. British Journal of Environment and Climate Change, 2013, 3, 378-401.	0.3	90
75	Integrated Reservoir Management System for Flood Risk Assessment Under Climate Change. Water Resources Management, 2012, 26, 3785-3802.	3.9	45
76	Assessment on variability of extreme climate events for the Upper Thames River basin in Canada. Hydrological Processes, 2012, 26, 485-499.	2.6	24
77	Multi-objective Analysis. , 2012, , 527-614.		0
78	Extreme precipitation vulnerability in the Upper Thames River basin: uncertainty in climate model projections. International Journal of Climatology, 2011, 31, 2350-2364.	3.5	14
79	Global water resources modeling with an integrated model of the social–economic–environmental system. Advances in Water Resources, 2011, 34, 684-700.	3.8	194
80	Engineering Procedure for the Climate Change Flood Risk Assessment in the Upper Thames River Basin. Journal of Hydrologic Engineering - ASCE, 2011, 16, 608-612.	1.9	19
81	ANEMI: a new model for integrated assessment of global change. Interdisciplinary Environmental Review, 2010, 11, 127.	0.2	35
82	An Operational Model for Support of Integrated Watershed Management. Water Resources Management, 2010, 24, 1161-1194.	3.9	44
83	Integrated Reservoir Management System for Adaptation to Climate Change: The Nakdong River Basin in Korea. Water Resources Management, 2010, 24, 3397-3417.	3.9	70
84	Fuzzy Nonlinear Regression Approach to Stage-Discharge Analyses: Case Study. Journal of Hydrologic Engineering - ASCE, 2010, 15, 49-56.	1.9	20
85	Climate Change Impact Assessment Using K-Nearest Neighbor Weather Generator: Case Study of the Nakdong River Basin in Korea. Journal of Hydrologic Engineering - ASCE, 2010, 15, 772-785.	1.9	27
86	Optimization of Water Distribution Network Design Using Differential Evolution. Journal of Water Resources Planning and Management - ASCE, 2010, 136, 279-287.	2.6	177
87	A new methodology for water resources multicriteria decision making under uncertainty. Physics and Chemistry of the Earth, 2008, 33, 322-329.	2.9	42
88	An inverse-modelling approach to assess the impacts of climate change in the Seyhan River basin, Turkey / Une approche de modélisation inverse pour évaluer les impacts du changement climatique dans le bassin versant de la Rivière Seyhan, Turquie. Hydrological Sciences Journal, 2008, 53, 1121-1136.	2.6	10
89	Impacts of Changing Climatic Conditions in the Upper Thames River Basin. Canadian Water Resources Journal, 2007, 32, 265-284.	1.2	7
90	Inverse flood risk modelling under changing climatic conditions. Hydrological Processes, 2007, 21, 563-577.	2.6	49

#	Article	IF	CITATIONS
91	Increase of Flood Risk due to Urbanisation: A Canadian Example. Natural Hazards, 2007, 40, 25-41.	3.4	156
92	Sustainable floodplain management and participatory planning in the red river basin, canada. , 2007, , 175-188.		0
93	Participatory floodplain management in the Red River Basin, Canada. Annual Reviews in Control, 2006, 30, 183-192.	7.9	17
94	An Intelligent Decision Support System for Management of Floods. Water Resources Management, 2006, 20, 391-410.	3.9	160
95	Are we modelling impacts of climatic change properly?. Hydrological Processes, 2006, 20, 431-433.	2.6	11
96	Aggregation of fuzzy views of a large number of stakeholders for multi-objective flood management decision-making. Journal of Environmental Management, 2005, 77, 133-143.	7.8	80
97	Computer-based Model for Flood Evacuation Emergency Planning. Natural Hazards, 2005, 34, 25-51.	3.4	164
98	A spatial multi-objective decision-making under uncertainty for water resources management. Journal of Hydroinformatics, 2005, 7, 117-133.	2.4	54
99	Hydrological extremes in a southwestern Ontario river basin under future climate conditions/Extrêmes hydrologiques dans un basin versant du sud-ouest de l'Ontario sous conditions climatiques futures. Hydrological Sciences Journal, 2005, 50, .	2.6	55
100	An artificial neural network model for generating hydrograph from hydro-meteorological parameters. Journal of Hydrology, 2005, 315, 236-251.	5.4	102
101	Response to Tanaka et al. Comment. Water International, 2004, 29, 404-405.	1.0	0
102	Fuzzy criteria for the evaluation of water resource systems performance. Water Resources Research, 2004, 40, .	4.2	41
103	Spatial System Dynamics: New Approach for Simulation of Water Resources Systems. Journal of Computing in Civil Engineering, 2004, 18, 331-340.	4.7	150
104	Sensitivity of the Red River Basin Flood Protection System to Climate Variability and Change. Water Resources Management, 2004, 18, 89-110.	3.9	54
105	Aggregation of Inputs from Stakeholders for Flood Management Decision-Making in the Red River Basin. Canadian Water Resources Journal, 2004, 29, 251-266.	1.2	9
106	Integrated Analyses of Canada's Water Resources: A System Dynamics Approach. Canadian Water Resources Journal, 2004, 29, 223-250.	1.2	50
107	Flooding in the Red River Basin – Lessons from Post Flood Activities. Natural Hazards, 2003, 28, 345-365.	3.4	27
108	Methodology for Assessment of Climate Change Impacts on Large-Scale Flood Protection System. Journal of Water Resources Planning and Management - ASCE, 2003, 129, 361-371.	2.6	83

#	Article	IF	CITATIONS
109	Two New Non-structural Measures for Sustainable Management of Floods. Water International, 2002, 27, 38-46.	1.0	17
110	Comparison of fuzzy set ranking methods for implementation in water resources decision-making. Canadian Journal of Civil Engineering, 2002, 29, 692-701.	1.3	44
111	World water dynamics: global modeling of water resources. Journal of Environmental Management, 2002, 66, 249-267.	7.8	142
112	Global water dynamics: issues for the 21st century. Water Science and Technology, 2002, 45, 53-64.	2.5	54
113	World water dynamics: global modeling of water resources. Journal of Environmental Management, 2002, 66, 249-267.	7.8	80
114	System dynamics model for predicting floods from snowmelt in North American prairie watersheds. Hydrological Processes, 2002, 16, 2645-2666.	2.6	109
115	Optimal Operation of Reservoir Systems using Simulated Annealing. Water Resources Management, 2002, 16, 401-428.	3.9	100
116	Global water dynamics: issues for the 21st century. Water Science and Technology, 2002, 45, 53-64.	2.5	1
117	Integration of heuristic knowledge with analytical tools for the selection of flood damage reduction measures. Canadian Journal of Civil Engineering, 2001, 28, 208-221.	1.3	59
118	Modeling Human Behavior for Evacuation Planning: A System Dynamics Approach. , 2001, , 1.		5
119	Red River Basin Canadian Flood Management Virtual Database. , 2000, , 1.		1
120	A fuzzy compromise approach to water resource systems planning under uncertainty. Fuzzy Sets and Systems, 2000, 115, 35-44.	2.7	178
121	Aggregation operators for soft decision making in water resources. Fuzzy Sets and Systems, 2000, 115, 11-33.	2.7	77
122	Short-Term Operation Model for Coupled Hydropower Reservoirs. Journal of Water Resources Planning and Management - ASCE, 2000, 126, 98-106.	2.6	58
123	A Shared Vision for Management of Water Resources. Water International, 2000, 25, 1-2.	1.0	19
124	One View of the Future. Water International, 2000, 25, 76-88.	1.0	86
125	System Dynamics Modeling of Reservoir Operations for Flood Management. Journal of Computing in Civil Engineering, 2000, 14, 190-198.	4.7	223
126	Social criteria for evaluation of flood control measures: Winnipeg case study. Urban Water, 1999, 1, 167-175.	0.5	23

#	Article	IF	CITATIONS
127	Short term streamflow forecasting using artificial neural networks. Journal of Hydrology, 1999, 214, 32-48.	5.4	415
128	DECISION SUPPORT SYSTEM FOR FLOOD MANAGEMENT IN THE RED RIVER BASIN. Canadian Water Resources Journal, 1999, 24, 203-223.	1.2	28
129	A new modeling approach for water resources policy analysis. Water Resources Research, 1999, 35, 295-304.	4.2	145
130	Modeling uncertainty in reservoir loss functions using fuzzy sets. Water Resources Research, 1999, 35, 2815-2823.	4.2	55
131	Practical sustainability criteria for decision-making. International Journal of Sustainable Development and World Ecology, 1997, 4, 231-244.	5.9	14
132	Development of a risk measure as a sustainable project selection criterion. International Journal of Sustainable Development and World Ecology, 1997, 4, 274-285.	5.9	8
133	The Use of Object-Oriented Modeling for Water Resources Planning in Egypt. Water Resources Management, 1997, 11, 243-261.	3.9	69
134	A decision support system for the analysis and use of stage-discharge rating curves. Journal of Hydrology, 1996, 184, 225-241.	5.4	29
135	Engineering Risk Analysis of Water Pollution: Probabilities and Fuzzy Sets. Eos, 1996, 77, 266.	0.1	0
136	Decision Support Systems for Sustainable Management of Water Resources: 2. Case Studies. Water International, 1996, 21, 233-244.	1.0	35
137	Sensitivity of reservoir operation performance to climatic change. Water Resources Management, 1996, 10, 463-478.	3.9	30
138	Decision Support Systems for Sustainable Management of Water Resources: 1. General Principles. Water International, 1996, 21, 223-232.	1.0	65
139	Synthesizing missing streamflow records on several Manitoba streams using multiple nonlinear standardized correlation analysis. Hydrological Sciences Journal, 1995, 40, 183-203.	2.6	10
140	Timeâ€Series Modeling for Longâ€Range Streamâ€Flow Forecasting. Journal of Water Resources Planning and Management - ASCE, 1994, 120, 857-870.	2.6	25
141	A computer-based system for modelling the stage-discharge relationships in steady state conditions. Hydrological Sciences Journal, 1994, 39, 487-506.	2.6	13
142	A knowledgeâ€based advisory system for single multipurpose reservoir management. International Journal of Water Resources Development, 1992, 8, 186-194.	2.0	5
143	Reservoir Systems Analysis: Closing Cap between Theory and Practice. Journal of Water Resources Planning and Management - ASCE, 1992, 118, 262-280.	2.6	215
144	Risk-based parameter selection for short-term reservoir operation. Journal of Hydrology, 1992, 131, 269-291.	5.4	33

Slobodan P Simonovic

#	Article	IF	CITATIONS
145	Systems Theory for the civil engineer Comparison of algorithms for hydropower optimization: Manitoba Hydro case study. Civil Engineering and Environmental Systems, 1991, 8, 3-8.	0.2	Ο
146	Application Of Water Resources Systems Concept To The Formulation Of A Water Master Plan. Water International, 1989, 14, 37-50.	1.0	35
147	Intelligent Decision Support and Reservoir Management and Operations. Journal of Computing in Civil Engineering, 1989, 3, 367-385.	4.7	37
148	An improved methodology for shortâ€ŧerm operation of a single multipurpose reservoir. Water Resources Research, 1989, 25, 1-8.	4.2	51
149	OPTIMIZATION OF THE HYDROMETRIC NETWORK OPERATION BY A HEURISTIC TRAVELING SALESMAN ALGORITHM. Journal of the American Water Resources Association, 1988, 24, 1185-1192.	2.4	1
150	The implicit stochastic model for reservoir yield optimization. Water Resources Research, 1987, 23, 2159-2165.	4.2	32
151	Reliability programing in reservoir management: 3. System of multipurpose reservoirs. Water Resources Research, 1982, 18, 735-743.	4.2	36
152	Reliability programing in reservoir management: 1. Single multipurpose reservoir. Water Resources Research, 1980, 16, 844-848.	4.2	63