Magali Proffit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3461783/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular phylogenetic analysis and taxonomic reconsideration of Ceropegia hirsuta (Apocynaceae,) Tj ETQq1 1 ecology. Plant Systematics and Evolution, 2021, 307, 1.	0.784314 0.9	rgBT /Overlo 5
2	Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and figâ€wasp mutualism. Journal of Ecology, 2018, 106, 2256-2273.	4.0	37
3	With or without you: Effects of the concurrent range expansion of an herbivore and its natural enemy on native species interactions. Global Change Biology, 2018, 24, 631-643.	9.5	21
4	Can fine-scale post-pollination variation of fig volatile compounds explain some steps of the temporal succession of fig wasps associated with Ficus racemosa?. Acta Oecologica, 2018, 90, 81-90.	1.1	10
5	Host-plant location by the Guatemalan potato moth Tecia solanivora is assisted by floral volatiles. Chemoecology, 2017, 27, 187-198.	1.1	7
6	Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. Journal of Ecology, 2017, 105, 801-815.	4.0	87
7	How to be a dioecious fig: Chemical mimicry between sexes matters only when both sexes flower synchronously. Scientific Reports, 2016, 6, 21236.	3.3	23
8	Tracking the elusive history of diversification in plant–herbivorous insect–parasitoid food webs: insights from figs and fig wasps. Molecular Ecology, 2016, 25, 843-845.	3.9	9
9	â€~Do you remember the first time?' Host plant preference in a moth is modulated by experiences during larval feeding and adult mating. Ecology Letters, 2015, 18, 365-374.	6.4	69
10	Floral volatiles, pollinator sharing and diversification in the fig–wasp mutualism: insights from <i>Ficus natalensis</i> , and its two wasp pollinators (South Africa). Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1731-1739.	2.6	66
11	"This is not an Appleâ€â€"Yeast Mutualism in Codling Moth. Journal of Chemical Ecology, 2012, 38, 949-957	. 1.8	91
12	Critical thinking in the chemical ecology of mammalian communication: roadmap for future studies. Functional Ecology, 2012, 26, 769-774.	3.6	32
13	Evidence for intersexual chemical mimicry in a dioecious plant. Ecology Letters, 2012, 15, 978-985.	6.4	49
14	Mating Disruption of Guatemalan Potato Moth Tecia Solanivora by Attractive and Non-Attractive Pheromone Blends. Journal of Chemical Ecology, 2012, 38, 63-70.	1.8	11
15	Attraction and Oviposition of Tuta absoluta Females in Response to Tomato Leaf Volatiles. Journal of Chemical Ecology, 2011, 37, 565-574.	1.8	110
16	Geographic variation of floral scent in a highly specialized pollination mutualism. Phytochemistry, 2011, 72, 74-81.	2.9	55
17	Floral scents: their roles in nursery pollination mutualisms. Chemoecology, 2010, 20, 75-88.	1.1	113
18	Private channels in plant–pollinator mutualisms. Plant Signaling and Behavior, 2010, 5, 893-895.	2.4	14

MAGALI PROFFIT

#	Article	IF	CITATIONS
19	Specificity of the signal emitted by figs to attract their pollinating wasps: Comparison of volatile organic compounds emitted by receptive syconia of Ficus sur and F. sycomorus in Southern Africa. South African Journal of Botany, 2009, 75, 771-777.	2.5	32
20	Private channel: a single unusual compound assures specific pollinator attraction in <i>Ficus semicordata</i> . Functional Ecology, 2009, 23, 941-950.	3.6	102
21	Can chemical signals, responsible for mutualistic partner encounter, promote the specific exploitation of nursery pollination mutualisms? – The case of figs and fig wasps. Entomologia Experimentalis Et Applicata, 2009, 131, 46-57.	1.4	56
22	Evidence from population genetics that the ectomycorrhizal basidiomycete <i>Laccaria amethystina</i> is an actual multihost symbiont. Molecular Ecology, 2008, 17, 2825-2838.	3.9	64
23	Chemical mediation and niche partitioning in non-pollinating fig-wasp communities. Journal of Animal Ecology, 2007, 76, 296-303.	2.8	63
24	Complex interactions on fig trees: ants capturing parasitic wasps as possible indirect mutualists of the fig-fig wasp interaction. Oikos, 2006, 113, 344-352.	2.7	33