Tai-Gyu Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3461387/publications.pdf

Version: 2024-02-01

279798 434195 128 1,605 23 31 citations h-index g-index papers 128 128 128 2039 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Immunological Factors Relating to the Antitumor Effect of Temozolomide Chemoimmunotherapy in a Murine Glioma Model. Vaccine Journal, 2010, 17, 143-153.	3.1	65
2	Long-term Outcome of Extranodal NK/T Cell Lymphoma Patients Treated With Postremission Therapy Using EBV LMP1 and LMP2a-specific CTLs. Molecular Therapy, 2015, 23, 1401-1409.	8.2	63
3	Enhanced antitumour immunity by combined use of temozolomide and TATâ€survivin pulsed dendritic cells in a murine glioma. Immunology, 2007, 122, 615-622.	4.4	48
4	CpG-ODN-stimulated dendritic cells act as a potent adjuvant for E7 protein delivery to induce antigen-specific antitumour immunity in a HPV 16 E7-associated animal tumour model. Immunology, 2004, 112, 117-125.	4.4	44
5	Enhancement of anti-tumor immunity specific to murine glioma by vaccination with tumor cell lysate-pulsed dendritic cells engineered to produce interleukin-12. Cancer Immunology, Immunotherapy, 2006, 55, 1309-1319.	4.2	44
6	In vitro induction of carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes by dendritic cells transduced with recombinant adenoviruses. Vaccine, 2003, 22, 224-236.	3.8	40
7	Comprehensive Analysis of Cytomegalovirus pp65 Antigen-Specific CD8+ T Cell Responses According to Human Leukocyte Antigen Class I Allotypes and Intraindividual Dominance. Frontiers in Immunology, 2017, 8, 1591.	4.8	39
8	Recent progress of national banking project on homozygous <scp>HLA</scp> â€typed induced pluripotent stem cells in <scp>S</scp> outh <scp>K</scp> orea. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1531-e1536.	2.7	39
9	Dendritic cells transduced with recombinant adenoviruses induce more efficient anti-tumor immunity than dendritic cells pulsed with peptide. Vaccine, 2006, 24, 2860-2868.	3.8	38
10	Adoptive Transfer of Epstein-Barr Virus-Specific Cytotoxic T-Lymphocytes for the Treatment of Angiocentric Lymphomas. International Journal of Hematology, 2006, 83, 66-73.	1.6	34
11	GM-CSF Promotes the Expansion and Differentiation of Cord Blood Myeloid-Derived Suppressor Cells, Which Attenuate Xenogeneic Graft-vsHost Disease. Frontiers in Immunology, 2019, 10, 183.	4.8	34
12	Polymorphisms of tumor necrosis factor (TNF) \hat{l}_{\pm} and \hat{l}^{2} genes in Korean patients with psoriasis. Archives of Dermatological Research, 2003, 295, 8-13.	1.9	33
13	Cross-priming by temozolomide enhances antitumor immunity of dendritic cell vaccination in murine brain tumor model. Vaccine, 2007, 25, 3485-3491.	3.8	33
14	A novel Epstein–Barr virus-latent membrane protein-1-specific T-cell receptor for TCR gene therapy. British Journal of Cancer, 2018, 118, 534-545.	6.4	33
15	Toll like Receptor 3 & Double Stranded RNA and Lipopolysaccharide. PLoS ONE, 2014, 9, e101558.	2.5	31
16	Direct vaccination with pseudotype baculovirus expressing murine telomerase induces anti-tumor immunity comparable with RNA-electroporated dendritic cells in a murine glioma model. Cancer Letters, 2007, 250, 276-283.	7.2	29
17	HLA alleles, especially amino-acid signatures of HLA-DPB1, might contribute to the molecular pathogenesis of early-onset autoimmune thyroid disease. PLoS ONE, 2019, 14, e0216941.	2.5	29
18	Distribution of MICA alleles and haplotypes associated with HLA in the Korean population. Human Immunology, 2003, 64, 378-384.	2.4	27

#	Article	IF	CITATIONS
19	The Activating Killer Cell Immunoglobulin-Like Receptors as Important Determinants of Acute Graft-Versus Host Disease in Hematopoietic Stem Cell Transplantation for Acute Myelogenous Leukemia. Transplantation, 2007, 84, 1082-1091.	1.0	27
20	Association of Toll-Like Receptor 10 Polymorphisms with Autoimmune Thyroid Disease in Korean Children. Thyroid, 2015, 25, 250-255.	4.5	26
21	Coâ€administration of carcinoembryonic antigen and HIV TAT fusion protein with CpGâ€oligodeoxynucleotide induces potent antitumor immunity. Cancer Science, 2008, 99, 1034-1039.	3.9	25
22	Association of HLA Alleles with Autoimmune Thyroid Disease in Korean Children. Hormone Research in Paediatrics, 2011, 76, 328-334.	1.8	25
23	HLA-Cw polypmorphism and killer cell immunoglobulin-like receptor (KIR) gene analysis in Korean colorectal cancer patients. International Journal of Surgery, 2014, 12, 815-820.	2.7	24
24	An optimized peptide vaccine strategy capable of inducing multivalent CD8 ⁺ T cell responses with potent antitumor effects. Oncolmmunology, 2015, 4, e1043504.	4.6	24
25	Antigen Presentation by Individually Transferred HLA Class I Genes in HLA-A, HLA-B, HLA-C Null Human Cell Line Generated Using the Multiplex CRISPR-Cas9 System. Journal of Immunotherapy, 2017, 40, 201-210.	2.4	24
26	Potential role of adoptively transferred allogeneic WT1-specific CD4+ and CD8+ T lymphocytes for the sustained remission of refractory AML. Bone Marrow Transplantation, 2010, 45, 597-599.	2.4	23
27	Modification of CEA with both CRT and TAT PTD induces potent anti-tumor immune responses in RNA-pulsed DC vaccination. Vaccine, 2008, 26, 6433-6440.	3.8	22
28	HLA-C*01 is a Risk Factor for Crohnʽs Disease. Inflammatory Bowel Diseases, 2016, 22, 796-806.	1.9	22
29	Enhanced induction of anti-tumor immunity in human and mouse by dendritic cells pulsed with recombinant TAT fused human survivin protein. Cancer Letters, 2007, 258, 189-198.	7.2	21
30	Efficient induction of anti-tumor immunity by a TAT-CEA fusion protein vaccine with poly(I:C) in a murine colorectal tumor model. Vaccine, 2011, 29, 8642-8648.	3.8	19
31	Transfer of Her-2/neu Specificity into Cytokine-Induced Killer (CIK) Cells with RNA Encoding Chimeric Immune Receptor (CIR). Journal of Clinical Immunology, 2009, 29, 806-814.	3.8	18
32	Dendritic cell vaccine in addition to FOLFIRI regimen improve antitumor effects through the inhibition of immunosuppressive cells in murine colorectal cancer model. Vaccine, 2010, 28, 7787-7796.	3.8	18
33	Triple costimulation via CD80, 4-1BB, and CD83 ligand elicits the long-term growth of Vγ9VÎ^2 T cells in low levels of IL-2. Journal of Leukocyte Biology, 2016, 99, 521-529.	3.3	18
34	Combinatorial molecular marker assays of <scp><i>WT1</i></scp> , <scp><i>scp><i>TERT</i></i></scp> at initial diagnosis of adult acute myeloid leukemia. European Journal of Haematology, 2013, 91, 411-422.	2.2	17
35	Association of Polymorphisms in <i>Toll-Like Receptors 4</i> and <i>9</i> with Autoimmune Thyroid Disease in Korean Pediatric Patients. International Journal of Endocrinology, 2017, 2017, 1-8.	1.5	17
36	The optimal interval for dendritic cell vaccination following adoptive T cell transfer is important for boosting potent anti-tumor immunity. Vaccine, 2007, 25, 7322-7330.	3.8	16

#	Article	IF	Citations
37	Efficient antitumor immunity in a murine colorectal cancer model induced by CEA RNAâ€electroporated B cells. European Journal of Immunology, 2008, 38, 2106-2117.	2.9	16
38	Use of Engineered Exosomes Expressing HLA and Costimulatory Molecules to Generate Antigen-specific CD8+ T Cells for Adoptive Cell Therapy. Journal of Immunotherapy, 2017, 40, 83-93.	2.4	16
39	Association of MICA Alleles with Autoimmune Thyroid Disease in Korean Children. International Journal of Endocrinology, 2012, 2012, 1-7.	1.5	15
40	Exosomes from human cord blood plasma accelerate cutaneous wound healing by promoting fibroblast function, angiogenesis, and M2 macrophage differentiation. Biomaterials Science, 2021, 9, 3028-3039.	5.4	15
41	Association of HLA alleles with non-Hodgkin's lymphoma in Korean population. International Journal of Hematology, 2008, 87, 203-209.	1.6	14
42	Extracellular vesicles from human umbilical cord blood plasma modulate interleukin-2 signaling of T cells to ameliorate experimental autoimmune encephalomyelitis. Theranostics, 2020, 10, 5011-5028.	10.0	14
43	$\hat{I}^3\hat{I}$ T cells cultured with artificial antigen-presenting cells and IL-2 show long-term proliferation and enhanced effector functions compared with $\hat{I}^3\hat{I}$ T cells cultured with only IL-2 after stimulation with zoledronic acid. Cytotherapy, 2021, 23, 908-917.	0.7	14
44	Influence of Human Leukocyte Antigen in the Pathogenesis of MeÂ'nie`re's Disease in the South Korean Population. Acta Oto-Laryngologica, 2002, 122, 851-856.	0.9	13
45	Efficient co-transduction of adenoviral vectors encoding carcinoembryonic antigen and survivin into dendritic cells by the CAR-TAT adaptor molecule enhance anti-tumor immunity in a murine colorectal cancer model. Immunology Letters, 2010, 131, 73-80.	2.5	13
46	HLA and Disease Associations in Koreans. Immune Network, 2011, 11, 324.	3.6	13
47	Allele and haplotype frequencies of human leukocyte antigen-A, -B, -C, -DRB1, -DRB3/4/5, -DQA1, -DQB1, -DPA1, and -DPB1 by next generation sequencing-based typing in Koreans in South Korea. PLoS ONE, 2021, 16, e0253619.	2.5	13
48	DQCAR 113 and DQCAR 115 in combination with HLA-DRB1 alleles are significant markers of susceptibility to rheumatoid arthritis in the Korean population. Tissue Antigens, 1999, 54, 552-559.	1.0	12
49	Direct and indirect antitumor effects by human peripheral blood lymphocytes expressing both chimeric immune receptor and interleukin-2 in ovarian cancer xenograft model. Cancer Gene Therapy, 2010, 17, 742-750.	4.6	12
50	Induction of antitumor immunity using dendritic cells electroporated with Poloâ€like kinase 1 (Plk1) mRNA in murine tumor models. Cancer Science, 2011, 102, 1448-1454.	3.9	12
51	Post-transplant immunotherapy with WT1-specific CTLs for high-risk acute myelogenous leukemia: a prospective clinical phase I/II trial. Bone Marrow Transplantation, 2019, 54, 903-906.	2.4	12
52	Simultaneous in vitro generation of CD8 and CD4 T cells specific to three universal tumor associated antigens of WT1, survivin and TERT and adoptive T cell transfer for the treatment of acute myeloid leukemia. Oncotarget, 2017, 8, 44059-44072.	1.8	12
53	Identification of HLA-A*11 variant (A*1107) in the Korean population. Tissue Antigens, 2001, 58, 190-192.	1.0	11
54	Ex Vivo Generated Human Cord Blood Myeloid-Derived Suppressor Cells Attenuate Murine Chronic Graft-versus-Host Diseases. Biology of Blood and Marrow Transplantation, 2018, 24, 2381-2396.	2.0	11

#	Article	IF	Citations
55	Co-expression of CD40L with CD70 or OX40L increases B-cell viability and antitumor efficacy. Oncotarget, 2016, 7, 46173-46186.	1.8	11
56	Unrelated hematopoietic stem cell registry and the role of the Hematopoietic Stem Cell Bank. Blood Research, 2016, 51, 107.	1.3	9
57	Association of MICA and MICB polymorphisms with the susceptibility of leukemia in Korean patients. Blood Cancer Journal, 2018, 8, 58.	6.2	9
58	Comprehensive Analysis of CD4+ T Cell Responses to CMV pp65 Antigen Restricted by Single HLA-DR, -DQ, and -DP Allotype Within an Individual. Frontiers in Immunology, 2020, 11, 602014.	4.8	9
59	Identification of Leukemia-Specific Fusion Gene Transcripts with a Novel Oligonucleotide Array. Molecular Diagnosis and Therapy, 2007, 11, 21-28.	3.8	8
60	Influence of killer cell immunoglobulin-like receptor genotypes on acute graft-vs-host disease after unrelated hematopoietic stem cell transplantation in Koreans. Tissue Antigens, 2007, 69, 114-117.	1.0	8
61	Efficient generation of survivin-specific cytotoxic T lymphocytes from healthy persons in vitro: Quantitative and qualitative effects of CD4+ T cells. Vaccine, 2008, 26, 3987-3997.	3.8	8
62	Comprehensive analysis of cytokine gene polymorphisms defines the association of IL-12 gene with ophthalmopthy in Korean children with autoimmune thyroid disease. Molecular and Cellular Endocrinology, 2016, 426, 43-49.	3.2	8
63	GPR174 and ITM2A Gene Polymorphisms rs3827440 and rs5912838 on the X chromosome in Korean Children with Autoimmune Thyroid Disease. Genes, 2020, 11, 858.	2.4	8
64	Topoisomerase II alpha as a universal tumor antigen: antitumor immunity in murine tumor models and H-2Kb-restricted T cell epitope. Cancer Immunology, Immunotherapy, 2010, 59, 747-757.	4.2	7
65	Distributions of HLAâ€A , â€B, and ―DRB1 alleles typed by ampliconâ€based next generation sequencing in Korean volunteer donors for unrelated hematopoietic stem cell transplantation. Hla, 2021, 97, 112-126.	0.6	7
66	HLA polymorphisms and risk of glioblastoma in Koreans. PLoS ONE, 2021, 16, e0260618.	2.5	7
67	Distribution of the minor histocompatibility antigens in Korean population and disparities in unrelated hematopoietic SCT. Bone Marrow Transplantation, 2007, 40, 723-728.	2.4	6
68	Shared epitope and radiologic progression are less prominent in elderly onset RA than young onset RA. Rheumatology International, 2013, 33, 2135-2140.	3.0	6
69	Infusions of Epstein–Barr virus-specific cytotoxic T lymphocytes as post-remission therapy in high-risk post-transplant lymphoproliferative disorder patients: report of two cases. International Journal of Hematology, 2018, 107, 596-603.	1.6	6
70	The <scp><i>HLAâ€A*33:03:42</i></scp> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2020, 96, 334-335.	0.6	6
71	Polymorphisms of IRAK1 Gene on X Chromosome Is Associated with Hashimoto Thyroiditis in Korean Children. Endocrinology, 2020, 161 , .	2.8	6
72	The <scp><i>HLAâ€A*24:480</i></scp> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2020, 96, 332-334.	0.6	6

#	Article	IF	CITATIONS
73	Comprehensive Analysis of CD4+ T Cell Response Cross-Reactive to SARS-CoV-2 Antigens at the Single Allele Level of HLA Class II. Frontiers in Immunology, 2021, 12, 774491.	4.8	6
74	A membrane-bound form of IL-4 enhances proliferation and antigen presentation of CD40-activated human B cells. Immunology Letters, 2008, 116, 33-40.	2.5	5
75	Microarrays for highâ€throughput genotyping of <scp>MICA</scp> alleles using alleleâ€specific primer extension. Tissue Antigens, 2013, 82, 259-268.	1.0	5
76	Multiplex Genotyping of Cytokine Gene SNPs Using Fluorescence Bead Array. PLoS ONE, 2015, 10, e0118008.	2.5	5
77	Zoledronic acid induces dose-dependent increase of antigen-specific CD8 T-cell responses in combination with peptide/poly-IC vaccine. Vaccine, 2016, 34, 1275-1281.	3.8	5
78	Specific donor HLA allotypes as predictors of cytomegalovirus disease risk in acute myeloid leukemia. Hla, 2020, 96, 445-455.	0.6	5
79	Measurement of CD8+ and CD4+ T Cell Frequencies Specific for EBV LMP1 and LMP2a Using mRNA-Transfected DCs. PLoS ONE, 2015, 10, e0127899.	2.5	5
80	The HLA-DQB1*04:02:03 allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2018, 92, 313-314.	0.6	4
81	The HLA-DRB1*09:29 allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2018, 92, 261-262.	0.6	4
82	The HLA-B*54:35 and -B*54:38 identified in volunteer donors for hematopoietic stem cell transplant. Hla, 2018, 92, 180-181.	0.6	4
83	Association of HLA class I and II genes with Middle East respiratory syndrome coronavirus infection in Koreans. Immunity, Inflammation and Disease, 2022, 10, 111-116.	2.7	4
84	HLA-B*40:330 allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2018, 92, 248-250.	0.6	3
85	The HLA-C*07:478 allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2018, 92, 256-257.	0.6	3
86	The HLA-A*33:110 allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2018, 92, 242-243.	0.6	3
87	The HLA-B*58:01:20 allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2018, 92, 103-104.	0.6	3
88	The HLA-A*26:132 allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2018, 92, 97-99.	0.6	3
89	The <i>HLAâ€DRB1*04:277</i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2020, 95, 225-226.	0.6	3
90	The <i>><scp>HLAâ€B</scp>*35:01:64</i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2021, 97, 147-148.	0.6	3

#	Article	IF	CITATIONS
91	The <i>><scp>HLAâ€A</scp>*02:954</i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2021, 97, 439-441.	0.6	3
92	The <i>><scp>HLAâ€8</scp>*13:144</i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2021, 97, 548-550.	0.6	3
93	The <i>><scp>HLAâ€DRB1</scp>*09:45</i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2021, 98, 238-239.	0.6	3
94	The <i>><scp>HLAâ€A</scp>*24:<scp>514N</scp></i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2021, 97, 527-529.	0.6	3
95	The <i>><scp>HLAâ€A</scp>*11:384</i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2021, 97, 525-526.	0.6	3
96	T Cells Modified with CD70 as an Alternative Cellular Vaccine for Antitumor Immunity. Cancer Research and Treatment, 2020, 52, 747-763.	3.0	3
97	The <i>HLAâ€B*51:353</i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2022, 99, 385-387.	0.6	3
98	The <i>><scp>HLAâ€B</scp>*07:457</i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2022, 100, 362-364.	0.6	3
99	The <i>><scp>HLAâ€DRB1</scp>*12:97</i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2022, 100, 391-392.	0.6	3
100	Improved genotyping of the human minor histocompatibility antigen HB-1 by polymerase chain reaction with sequence-specific primers using a complementary oligonucleotide. Tissue Antigens, 2010, 76, 482-486.	1.0	2
101	CD4 T-cells transduced with CD80 and 4-1BBL mRNA induce long-term CD8 T-cell responses resulting in potent antitumor effects. Vaccine, 2014, 32, 6919-6926.	3.8	2
102	The HLA-C*01:32:02 allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2018, 92, 315-316.	0.6	2
103	The HLA-C*06:66 allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2018, 92, 318-319.	0.6	2
104	The HLA-B*46:67 allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2018, 92, 310-311.	0.6	2
105	The HLA-C*03:272 allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2018, 92, 316-318.	0.6	2
106	The HLA-B*15:400N allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2018, 92, 100-101.	0.6	2
107	The <scp><i>HLAâ€DRB1*04:05:21</i></scp> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2020, 96, 110-111.	0.6	2
108	<i>HLAâ€A*02:877</i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2020, 95, 480-482.	0.6	2

#	Article	IF	CITATIONS
109	The <i>HLAâ€B*54:41</i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2020, 95, 496-497.	0.6	2
110	The <i>HLAâ€B*15:529</i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2020, 95, 490-491.	0.6	2
111	The <i>HLAâ€B*07:367</i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2020, 95, 488-489.	0.6	2
112	The <i>HLAâ€A*31:154</i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2020, 95, 485-486.	0.6	2
113	The <i>HLAâ€B*46:01:26</i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2020, 95, 492-493.	0.6	2
114	The <i>HLAâ€B*44:454</i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2020, 95, 210-212.	0.6	2
115	The <i>HLAâ€B*51:284</i> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2020, 95, 494-495.	0.6	2
116	Physical and Psychological Discomfort Experienced by Hematopoietic Stem-Cell Donors. International Journal of Environmental Research and Public Health, 2020, 17, 2316.	2.6	2
117	Establishment of HLA class I and MICA/B null HEK-293T panel expressing single MICA alleles to detect anti-MICA antibodies. Scientific Reports, 2021, 11, 15716.	3.3	2
118	MICB Allele Genotyping on Microarrays by Improving the Specificity of Extension Primers. PLoS ONE, 2015, 10, e0142467.	2.5	2
119	Enhancement of Adenoviral Transduction and Immunogenecity of Transgenes by Soluble Coxsackie and Adenovirus Receptor-TAT Fusion Protein on Dendritic Cells. Immune Network, 2006, 6, 192.	3.6	1
120	Recipient's Killer Cell Immunoglobulin-like Receptor Genotype and Human Leukocyte Antigen C Ligand Influence the Clinical Outcome following Living Donor Liver Transplantation. [Chapchi] Journal Taehan Oekwa Hakhoe, 2010, 78, 357.	1.1	1
121	Comparison and correlation among in vitro and in vivo assays to assess cord blood quality according to delivery temperature and time after collection. Transfusion and Apheresis Science, 2019, 58, 475-483.	1.0	1
122	Experiences of Unrelated Hematopoietic Stem-cell Donors and Experts of Relevant Institutions. Korean Journal of Adult Nursing, 2019, 31, 522.	0.7	1
123	Identification of Naturally Processed Epitope Region Using Artificial APC Expressing a Single HLA Class I Allotype and mRNA of HCMV pp65 Antigen Fragments. Vaccines, 2022, 10, 787.	4.4	1
124	The <scp><i>HLAâ€A*02:842</i></scp> allele identified in a volunteer donor for hematopoietic stem cell transplant. Hla, 2020, 95, 478-480.	0.6	0
125	An effective peptide vaccine strategy circumventing clonal MHC heterogeneity of murine myeloid leukaemia. British Journal of Cancer, 2020, 123, 919-931.	6.4	0
126	Antitunor effect of carcinoma cells transduced with herpes simplex virus-thymidine kinase by gancyclovir and radiation. Immune Network, 2001, 1, 45.	3.6	0

#	Article	lF	CITATIONS
127	Investigation of IL-1B (-511, +3954) and IL-1RN Gene Polymorphisms in Korean Psoriasis Patients. Immune Network, 2003, 3, 242.	3.6	o
128	Specific Donor Human Leukocyte Antigen (HLA) Allotypes and CMV IgG Serology Status Predict the Risk of Cytomegalovirus-Related Disease in Acute Myeloid Leukemia Patients Who Received Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2018, 132, 2076-2076.	1.4	0