
Zhongxing Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3460751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lymphopenia Association With Gross Tumor Volume and Lung V5 and Its Effects on Non-Small Cell Lung Cancer Patient Outcomes. International Journal of Radiation Oncology Biology Physics, 2014, 89, 1084-1091.	0.8	285
2	Initial Evaluation of Treatment-Related Pneumonitis in Advanced-Stage Non–Small-Cell Lung Cancer Patients Treated With Concurrent Chemotherapy and Intensity-Modulated Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2007, 68, 94-102.	0.8	269
3	Delta-radiomics features for the prediction of patient outcomes in non–small cell lung cancer. Scientific Reports, 2017, 7, 588.	3.3	254
4	Bayesian Adaptive Randomization Trial of Passive Scattering Proton Therapy and Intensity-Modulated Photon Radiotherapy for Locally Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2018, 36, 1813-1822.	1.6	243
5	Propensity Score-based Comparison of Long-term Outcomes With 3-Dimensional Conformal Radiotherapy vs Intensity-Modulated Radiotherapy for Esophageal Cancer. International Journal of Radiation Oncology Biology Physics, 2012, 84, 1078-1085.	0.8	230
6	Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non-small-cell lung cancer. Nature Cancer, 2020, 1, 176-183.	13.2	201
7	Failure patterns in patients with esophageal cancer treated with definitive chemoradiation. Cancer, 2012, 118, 2632-2640.	4.1	176
8	Risk Factors for Pericardial Effusion in Inoperable Esophageal Cancer Patients Treated With Definitive Chemoradiation Therapy. International Journal of Radiation Oncology Biology Physics, 2008, 70, 707-714.	0.8	171
9	Prognostic Value and Reproducibility ofÂPretreatment CT Texture Features in Stage III Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2014, 90, 834-842.	0.8	170
10	Randomized Phase IIB Trial of Proton Beam Therapy Versus Intensity-Modulated Radiation Therapy for Locally Advanced Esophageal Cancer. Journal of Clinical Oncology, 2020, 38, 1569-1579.	1.6	158
11	Stereotactic ablative radiotherapy for operable stage I non-small-cell lung cancer (revised STARS): long-term results of a single-arm, prospective trial with prespecified comparison to surgery. Lancet Oncology, The, 2021, 22, 1448-1457.	10.7	154
12	Single-Fraction Stereotactic vs Conventional Multifraction Radiotherapy for Pain Relief in Patients With Predominantly Nonspine Bone Metastases. JAMA Oncology, 2019, 5, 872.	7.1	146
13	Clinical Implementation of Intensity Modulated Proton Therapy for Thoracic Malignancies. International Journal of Radiation Oncology Biology Physics, 2014, 90, 809-818.	0.8	125
14	7â€year followâ€up after stereotactic ablative radiotherapy for patients with stage I non–small cell lung cancer: Results of a phase 2 clinical trial. Cancer, 2017, 123, 3031-3039.	4.1	125
15	Circulating tumor DNA analysis depicts subclonal architecture and genomic evolution of small cell lung cancer. Nature Communications, 2018, 9, 3114.	12.8	122
16	Proton Beam Radiotherapy and Concurrent Chemotherapy for Unresectable Stage III Non–Small Cell Lung Cancer. JAMA Oncology, 2017, 3, e172032.	7.1	119
17	Pathological complete response in patients with esophageal cancer after the trimodality approach: The association with baseline variables and survival—The University of Texas MD Anderson Cancer Center experience. Cancer, 2017, 123, 4106-4113.	4.1	118
18	Early findings on toxicity of proton beam therapy with concurrent chemotherapy for nonsmall cell lung cancer. Cancer, 2011, 117, 3004-3013.	4.1	117

#	Article	IF	CITATIONS
19	Exploratory Study of 4D versus 3D Robust Optimization in Intensity Modulated Proton Therapy for Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2016, 95, 523-533.	0.8	103
20	Radiogenomics: Radiobiology Enters the Era of Big Data and Team Science. International Journal of Radiation Oncology Biology Physics, 2014, 89, 709-713.	0.8	99
21	Phase II Trial of Concurrent Atezolizumab With Chemoradiation for Unresectable NSCLC. Journal of Thoracic Oncology, 2020, 15, 248-257.	1.1	97
22	On the interplay effects with proton scanning beams in stage III lung cancer. Medical Physics, 2014, 41, 021721.	3.0	87
23	A Phase I Clinical Trial of Thoracic Radiotherapy and Concurrent Celecoxib for Patients with Unfavorable Performance Status Inoperable/Unresectable Non–Small Cell Lung Cancer. Clinical Cancer Research, 2005, 11, 3342-3348.	7.0	83
24	Long-term outcomes after proton therapy, with concurrent chemotherapy, for stage II–III inoperable non-small cell lung cancer. Radiotherapy and Oncology, 2015, 115, 367-372.	0.6	82
25	Multi-institutional analysis of radiation modality use and postoperative outcomes of neoadjuvant chemoradiation for esophageal cancer. Radiotherapy and Oncology, 2017, 123, 376-381.	0.6	81
26	The utility of quantitative <scp>CT</scp> radiomics features for improved prediction of radiation pneumonitis. Medical Physics, 2018, 45, 5317-5324.	3.0	81
27	Comparative Outcomes After Definitive Chemoradiotherapy Using Proton Beam Therapy Versus Intensity Modulated Radiation Therapy for Esophageal Cancer: A Retrospective, Single-Institutional Analysis. International Journal of Radiation Oncology Biology Physics, 2017, 99, 667-676.	0.8	79
28	Stereotactic ablative radiotherapy (SABR) using 70Gy in 10 fractions for non-small cell lung cancer: Exploration of clinical indications. Radiotherapy and Oncology, 2014, 112, 256-261.	0.6	78
29	Cardiac atlas development and validation for automatic segmentation of cardiac substructures. Radiotherapy and Oncology, 2017, 122, 66-71.	0.6	76
30	Impact of respiratory motion on worst-case scenario optimized intensity modulated proton therapy for lung cancers. Practical Radiation Oncology, 2015, 5, e77-e86.	2.1	75
31	Radiation modality use and cardiopulmonary mortality risk in elderly patients with esophageal cancer. Cancer, 2016, 122, 917-928.	4.1	75
32	Impact of heart and lung dose on early survival in patients with non-small cell lung cancer treated with chemoradiation. Radiotherapy and Oncology, 2016, 119, 495-500.	0.6	75
33	Robust optimization in intensity-modulated proton therapy to account for anatomy changes in lung cancer patients. Radiotherapy and Oncology, 2015, 114, 367-372.	0.6	72
34	Definitive Reirradiation for Locoregionally Recurrent Non-Small Cell Lung Cancer With Proton Beam Therapy or Intensity Modulated Radiation Therapy: Predictors of High-Grade Toxicity and Survival Outcomes. International Journal of Radiation Oncology Biology Physics, 2014, 90, 819-827.	0.8	71
35	Stage III Non–Small Cell Lung Cancer: Prognostic Value of FDG PET Quantitative Imaging Features Combined with Clinical Prognostic Factors. Radiology, 2016, 278, 214-222.	7.3	71
36	Cyclo-Oxygenase-2 and its Inhibition in Cancer. Drugs, 2007, 67, 821-845.	10.9	65

#	Article	IF	CITATIONS
37	Functional Polymorphisms of Base Excision Repair Genes XRCC1 and APEX1 Predict Risk of Radiation Pneumonitis in Patients With Non–Small Cell Lung Cancer Treated With Definitive Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2011, 81, e67-e73.	0.8	63
38	Incidence and Onset of Severe Cardiac Events After Radiotherapy for Esophageal Cancer. Journal of Thoracic Oncology, 2020, 15, 1682-1690.	1.1	63
39	Comparison of particle beam therapy and stereotactic body radiotherapy for early stage non-small cell lung cancer: A systematic review and hypothesis-generating meta-analysis. Radiotherapy and Oncology, 2017, 123, 346-354.	0.6	62
40	Propensity Score–Matched Analysis of Comprehensive Local Therapy for Oligometastatic Non-Small Cell Lung Cancer That Did Not Progress After Front-Line Chemotherapy. International Journal of Radiation Oncology Biology Physics, 2014, 90, 850-857.	0.8	61
41	Evaluation and mitigation of the interplay effects of intensity modulated proton therapy for lung cancer in a clinical setting. Practical Radiation Oncology, 2014, 4, e259-e268.	2.1	56
42	Re-evaluating the Optimal Radiation Dose for Definitive Chemoradiotherapy for Esophageal Squamous Cell Carcinoma. Journal of Thoracic Oncology, 2014, 9, 1398-1405.	1.1	55
43	Phase 2 Study of Stereotactic Body Radiation Therapy and Stereotactic Body Proton Therapy for High-Risk, Medically Inoperable, Early-Stage Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 101, 558-563.	0.8	55
44	Assessing tumor heterogeneity using ctDNA to predict and monitor therapeutic response in metastatic breast cancer. International Journal of Cancer, 2020, 146, 1359-1368.	5.1	55
45	Hemithoracic Intensity Modulated Radiation Therapy After Pleurectomy/Decortication for Malignant Pleural Mesothelioma: Toxicity, Patterns of Failure, and a Matched Survival Analysis. International Journal of Radiation Oncology Biology Physics, 2015, 91, 149-156.	0.8	52
46	Incidence and Predictors of Pericardial Effusion After Chemoradiation Therapy for Locally Advanced Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 99, 70-79.	0.8	52
47	Patterns of Care and Locoregional Treatment Outcomes in Older Esophageal Cancer Patients: The SEER-Medicare Cohort. International Journal of Radiation Oncology Biology Physics, 2009, 74, 482-489.	0.8	51
48	Long-Term Outcomes of Salvage Stereotactic AblativeÂRadiotherapy for Isolated Lung Recurrence of Non–Small Cell Lung Cancer: A Phase II Clinical Trial. Journal of Thoracic Oncology, 2017, 12, 983-992.	1.1	51
49	The relationship of lymphocyte recovery and prognosis of esophageal cancer patients with severe radiation-induced lymphopenia after chemoradiation therapy. Radiotherapy and Oncology, 2019, 133, 9-15.	0.6	50
50	Association of Long-term Outcomes and Survival With Multidisciplinary Salvage Treatment for Local and Regional Recurrence After Stereotactic Ablative Radiotherapy for Early-Stage Lung Cancer. JAMA Network Open, 2018, 1, e181390.	5.9	48
51	Esophagectomy after concurrent chemoradiotherapy improves locoregional control in clinical stage II or III esophageal cancer patients. International Journal of Radiation Oncology Biology Physics, 2004, 60, 1484-1493.	0.8	47
52	The impact of histology on recurrence patterns in esophageal cancer treated with definitive chemoradiotherapy. Radiotherapy and Oncology, 2017, 124, 318-324.	0.6	47
53	The Insurance Approval Process for Proton Radiation Therapy: A Significant Barrier to Patient Care. International Journal of Radiation Oncology Biology Physics, 2019, 104, 724-733.	0.8	47
54	Stereotactic ablative radiotherapy for adrenal gland metastases: Factors influencing outcomes, patterns of failure, and dosimetric thresholds for toxicity. Practical Radiation Oncology, 2017, 7, e195-e203.	2.1	44

#	Article	IF	CITATIONS
55	Impact of Spot Size and Spacing on the Quality of Robustly Optimized Intensity Modulated Proton Therapy Plans for Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 101, 479-489.	0.8	44
56	Extracellular vesicle tetraspanin-8 level predicts distant metastasis in non–small cell lung cancer after concurrent chemoradiation. Science Advances, 2020, 6, eaaz6162.	10.3	42
57	Early experience with intensity modulated proton therapy for lung-intact mesothelioma: A case series. Practical Radiation Oncology, 2015, 5, e345-e353.	2.1	40
58	A Phase III Multicenter Randomized Clinical Trial of 60 Gy versus 50 Gy Radiation Dose in Concurrent Chemoradiotherapy for Inoperable Esophageal Squamous Cell Carcinoma. Clinical Cancer Research, 2022, 28, 1792-1799.	7.0	39
59	Genetic variants of the LIN28B gene predict severe radiation pneumonitis in patients with non-small cell lung cancer treated with definitive radiation therapy. European Journal of Cancer, 2014, 50, 1706-1716.	2.8	38
60	Log odds of positive lymph nodes may predict survival benefit in patients with node-positive non-small cell lung cancer. Lung Cancer, 2018, 122, 60-66.	2.0	38
61	Biologically Effective Dose in Stereotactic Body Radiotherapy and Survival for Patients With Early-Stage NSCLC. Journal of Thoracic Oncology, 2020, 15, 101-109.	1.1	38
62	Spatial Dose Patterns Associated With Radiation Pneumonitis in a Randomized Trial Comparing Intensity-Modulated Photon Therapy With Passive Scattering Proton Therapy for Locally Advanced Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2019, 104, 1124-1132.	0.8	37
63	Survival Patterns for Patients with Resected N2 Non–Small Cell Lung Cancer and Postoperative Radiotherapy: A Prognostic Scoring Model and Heat Map Approach. Journal of Thoracic Oncology, 2018, 13, 1968-1974.	1.1	36
64	Effects of Respiratory Motion on Passively Scattered Proton Therapy Versus Intensity Modulated Photon Therapy for Stage III Lung Cancer: Are Proton Plans More Sensitive to Breathing Motion?. International Journal of Radiation Oncology Biology Physics, 2013, 87, 576-582.	0.8	35
65	A Mindfulness-Based Intervention as a Supportive Care Strategy for Patients with Metastatic Non-Small Cell Lung Cancer and Their Spouses: Results of a Three-Arm Pilot Randomized Controlled Trial. Oncologist, 2020, 25, e1794-e1802.	3.7	35
66	Clinical and Dosimetric Factors Predicting Grade ≥2 Radiation Pneumonitis After Postoperative Radiotherapy for Patients With Non-Small Cell Lung Carcinoma. International Journal of Radiation Oncology Biology Physics, 2018, 101, 919-926.	0.8	34
67	Reirradiation of thoracic cancers with intensity modulated proton therapy. Practical Radiation Oncology, 2018, 8, 58-65.	2.1	34
68	Status of particle therapy for lung cancer. Acta OncolÃ ³ gica, 2011, 50, 745-756.	1.8	32
69	Incidental Receipt of Cardiac Medications and Survival Outcomes Among Patients With Stage III Non–Small-Cell Lung Cancer After Definitive Radiotherapy. Clinical Lung Cancer, 2015, 16, 128-136.	2.6	32
70	Lung Size and the Risk of Radiation Pneumonitis. International Journal of Radiation Oncology Biology Physics, 2016, 94, 377-384.	0.8	32
71	Recurrence Risk Stratification After Preoperative Chemoradiation of Esophageal Adenocarcinoma. Annals of Surgery, 2018, 268, 289-295.	4.2	32
72	COX-2 and its inhibition as a molecular target in the prevention and treatment of lung cancer. Expert Review of Anticancer Therapy, 2004, 4, 543-560.	2.4	31

#	Article	IF	CITATIONS
73	Predicting Pneumonitis Risk: A Dosimetric Alternative to Mean Lung Dose. International Journal of Radiation Oncology Biology Physics, 2013, 85, 522-527.	0.8	31
74	Use of Simultaneous Radiation Boost Achieves High Control Rates in Patients With Non–Small-Cell Lung Cancer Who Are Not Candidates for Surgery or Conventional Chemoradiation. Clinical Lung Cancer, 2015, 16, 156-163.	2.6	31
75	Multifactorial Deep Learning Reveals Pan-Cancer Genomic Tumor Clusters with Distinct Immunogenomic Landscape and Response to Immunotherapy. Clinical Cancer Research, 2020, 26, 2908-2920.	7.0	30
76	Potentially Functional Variants of ATG16L2 Predict Radiation Pneumonitis and Outcomes in Patients with Non–Small Cell Lung Cancer after Definitive Radiotherapy. Journal of Thoracic Oncology, 2018, 13, 660-675.	1.1	29
77	Outcomes and toxicities following stereotactic ablative radiotherapy for pulmonary metastases in patients with primary head and neck cancer. Head and Neck, 2020, 42, 1939-1953.	2.0	29
78	A Multi-institutional Analysis of Trimodality Therapy for Esophageal Cancer in Elderly Patients. International Journal of Radiation Oncology Biology Physics, 2017, 98, 820-828.	0.8	28
79	Prospective Study of Patient-Reported Symptom Burden in Patients With Non–Small-Cell Lung Cancer Undergoing Proton or Photon Chemoradiation Therapy. Journal of Pain and Symptom Management, 2016, 51, 832-838.	1.2	27
80	Simultaneous Integrated Boost for Radiation Dose Escalation to the Gross Tumor Volume With Intensity Modulated (Photon) Radiation Therapy or Intensity Modulated Proton Therapy and Concurrent Chemotherapy for Stage II to III Non-Small Cell Lung Cancer: A Phase 1 Study. International Journal of Radiation Oncology Biology Physics, 2018, 100, 730-737.	0.8	27
81	Potential for Improvements in Robustness and Optimality of Intensity-Modulated Proton Therapy for Lung Cancer with 4-Dimensional Robust Optimization. Cancers, 2019, 11, 35.	3.7	27
82	Immune and Circulating Tumor DNA Profiling After Radiation Treatment for Oligometastatic Non-Small Cell Lung Cancer: Translational Correlatives from a Mature Randomized Phase II Trial. International Journal of Radiation Oncology Biology Physics, 2020, 106, 349-357.	0.8	27
83	Modern Radiotherapy and Risk of Cardiotoxicity. Chemotherapy, 2020, 65, 65-76.	1.6	27
84	Serum inflammatory miRNAs predict radiation esophagitis in patients receiving definitive radiochemotherapy for non-small cell lung cancer. Radiotherapy and Oncology, 2014, 113, 379-384.	0.6	26
85	Giant Circulating Cancer-Associated Macrophage-Like Cells Are Associated With Disease Recurrence and Survival in Non–Small-Cell Lung Cancer Treated With Chemoradiation and Atezolizumab. Clinical Lung Cancer, 2021, 22, e451-e465.	2.6	26
86	Radiation-induced lymphopenia during chemoradiation therapy for non-small cell lung cancer is linked with age, lung V5, and XRCC1 rs25487 genotypes in lymphocytes. Radiotherapy and Oncology, 2021, 154, 187-193.	0.6	25
87	Heart and lung doses are independent predictors of overall survival in esophageal cancer after chemoradiotherapy. Clinical and Translational Radiation Oncology, 2019, 17, 17-23.	1.7	24
88	Cancer associated macrophage-like cells and prognosis of esophageal cancer after chemoradiation therapy. Journal of Translational Medicine, 2020, 18, 413.	4.4	24
89	What Would Be the Most Appropriateα/βRatio in the Setting of Stereotactic Body Radiation Therapy for Early Stage Non-Small Cell Lung Cancer. BioMed Research International, 2013, 2013, 1-8.	1.9	23
90	Validation of Effective Dose as a Better Predictor of Radiation Pneumonitis Risk Than Mean Lung Dose: Secondary Analysis of a Randomized Trial. International Journal of Radiation Oncology Biology Physics, 2019, 103, 403-410.	0.8	23

#	Article	IF	CITATIONS
91	Toxicity and Survival After Intensity-Modulated Proton Therapy Versus Passive Scattering Proton Therapy for NSCLC. Journal of Thoracic Oncology, 2021, 16, 269-277.	1.1	23
92	Prognosis and predictors of site of first metastasis after definitive radiation therapy for non-small cell lung cancer. Acta Oncológica, 2016, 55, 1022-1028.	1.8	22
93	NTCP Models for Severe Radiation Induced Dermatitis After IMRT or Proton Therapy for Thoracic Cancer Patients. Frontiers in Oncology, 2020, 10, 344.	2.8	22
94	Clinical outcomes after intensity-modulated proton therapy with concurrent chemotherapy for inoperable non-small cell lung cancer. Radiotherapy and Oncology, 2019, 136, 136-142.	0.6	21
95	Mitigating the impact of COVID-19 on oncology: Clinical and operational lessons from a prospective radiation oncology cohort tested for COVID-19. Radiotherapy and Oncology, 2020, 148, 252-257.	0.6	20
96	Optimizing lung cancer radiation treatment worldwide in COVID-19 outbreak. Lung Cancer, 2020, 146, 230-235.	2.0	20
97	Stereotactic ablative radiation therapy for pulmonary metastases: Improving overall survival and identifying subgroups at high risk of local failure. Radiotherapy and Oncology, 2020, 145, 178-185.	0.6	20
98	Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer. Medical Dosimetry, 2013, 38, 442-447.	0.9	19
99	¹⁸ F-FDG PET Response After Induction Chemotherapy Can Predict Who Will Benefit from Subsequent Esophagectomy After Chemoradiotherapy for Esophageal Adenocarcinoma. Journal of Nuclear Medicine, 2017, 58, 1756-1763.	5.0	18
100	Automatic segmentation of cardiac substructures from noncontrast CT images: accurate enough for dosimetric analysis?. Acta Oncológica, 2019, 58, 81-87.	1.8	18
101	A nomogram that predicts pathologic complete response to neoadjuvant chemoradiation also predicts survival outcomes after definitive chemoradiation for esophageal cancer. Journal of Gastrointestinal Oncology, 2015, 6, 45-52.	1.4	18
102	Role of Cyclooxygenase-2 Inhibitors in Combination with Radiation Therapy in Lung Cancer. Clinical Lung Cancer, 2003, 4, 356-365.	2.6	17
103	18F-Fluorodeoxyglucose Positron Emission Tomography Can Quantify and Predict Esophageal Injury During Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2016, 96, 670-678.	0.8	17
104	Differences in lung injury after IMRT or proton therapy assessed by 18FDG PET imaging. Radiotherapy and Oncology, 2018, 128, 147-153.	0.6	17
105	Combination of a COX-2 Inhibitor With Radiotherapy or Radiochemotherapy in the Treatment of Thoracic Cancer. American Journal of Clinical Oncology: Cancer Clinical Trials, 2003, 26, S85-S91.	1.3	16
106	Association Between White Blood Cell Count Following Radiation Therapy With Radiation Pneumonitis in Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2014, 88, 319-325.	0.8	16
107	Single Nucleotide Polymorphisms in CBLB, aÂRegulator of T-Cell Response, Predict Radiation Pneumonitis and Outcomes After Definitive Radiotherapy for Non–Small-Cell Lung Cancer. Clinical Lung Cancer, 2016, 17, 253-262.e5.	2.6	16
108	A Prognostic Scoring Model for the Utility of Induction Chemotherapy Prior to Neoadjuvant Chemoradiotherapy in Esophageal Cancer. Journal of Thoracic Oncology, 2017, 12, 1001-1010.	1.1	16

#	Article	IF	CITATIONS
109	Analysis of Factors Affecting Successful Clinical Trial Enrollment in the Context of Three Prospective, Randomized, Controlled Trials. International Journal of Radiation Oncology Biology Physics, 2017, 97, 770-777.	0.8	16
110	Particle therapy in non-small cell lung cancer. Translational Lung Cancer Research, 2018, 7, 141-152.	2.8	16
111	Patterns of Local-Regional Failure After Intensity Modulated Radiation Therapy or Passive Scattering Proton Therapy With Concurrent Chemotherapy for Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2019, 103, 123-131.	0.8	16
112	Anatomic change over the course of treatment for non–small cell lung cancer patients and its impact on intensity-modulated radiation therapy and passive-scattering proton therapy deliveries. Radiation Oncology, 2020, 15, 55.	2.7	16
113	On the interplay between dosiomics and genomics in radiation-induced lymphopenia of lung cancer patients. Radiotherapy and Oncology, 2022, 167, 219-225.	0.6	16
114	Dosimetric benefits of respiratory gating: a preliminary study. Journal of Applied Clinical Medical Physics, 2004, 5, 1-9.	1.9	15
115	Objectively Quantifying Radiation Esophagitis With Novel Computed Tomography–Based Metrics. International Journal of Radiation Oncology Biology Physics, 2016, 94, 385-393.	0.8	15
116	A Novel Methodology using CT Imaging Biomarkers to Quantify Radiation Sensitivity in the Esophagus with Application to Clinical Trials. Scientific Reports, 2017, 7, 6034.	3.3	15
117	Proton therapy for locally advanced non-small cell lung cancer. British Journal of Radiology, 2020, 93, 20190378.	2.2	15
118	Minocycline Reduces Chemoradiation-Related Symptom Burden in Patients with Non-Small Cell Lung Cancer: A Phase 2 Randomized Trial. International Journal of Radiation Oncology Biology Physics, 2020, 106, 100-107.	0.8	15
119	Association of Medicaid Insurance With Survival Among Patients With Small Cell Lung Cancer. JAMA Network Open, 2020, 3, e203277.	5.9	15
120	Whole-brain radiotherapy with and without concurrent erlotinib in NSCLC with brain metastases: a multicenter, open-label, randomized, controlled phase III trial. Neuro-Oncology, 2021, 23, 967-978.	1.2	15
121	Radiation Pneumonitis in Thoracic Cancer Patients: Multi-Center Voxel-Based Analysis. Cancers, 2021, 13, 3553.	3.7	15
122	Single Institution Experience of Proton and Photon-based Postoperative Radiation Therapy for Non–small-cell Lung Cancer. Clinical Lung Cancer, 2021, 22, e745-e755.	2.6	15
123	Radiation-Induced Cardiovascular Disease: Mechanisms, Prevention, and Treatment. Current Oncology Reports, 2022, 24, 543-553.	4.0	15
124	Long-term survival and toxicity outcomes of intensity modulated radiation therapy for the treatment of esophageal cancer: A large single-institutional cohort study. Advances in Radiation Oncology, 2017, 2, 316-324.	1.2	14
125	Twice daily irradiation increases locoregional control in patients with medically inoperable or surgically unresectable stage II-IIIB non-small-cell lung cancer. International Journal of Radiation Oncology Biology Physics, 2002, 53, 558-565.	0.8	13
126	Technical Note: A Monte Carlo study of magneticâ€fieldâ€induced radiation dose effects in mice. Medical Physics, 2015, 42, 5510-5516.	3.0	13

#	Article	IF	CITATIONS
127	Potential Use of 18F-fluorodeoxyglucose Positron Emission Tomography–Based Quantitative Imaging Features for Guiding Dose Escalation inÂStage III Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2016, 94, 368-376.	0.8	13
128	Dosimetric comparison of the helical tomotherapy, volumetric-modulated arc therapy and fixed-field intensity-modulated radiotherapy for stage IIB-IIIB non-small cell lung cancer. Scientific Reports, 2017, 7, 14863.	3.3	13
129	Pilot Testing of a Brief Couple-Based Mind-Body Intervention for Patients With Metastatic Non-Small Cell Lung Cancer and Their Partners. Journal of Pain and Symptom Management, 2018, 55, 953-961.	1.2	13
130	Bayesian regression analyses of radiation modality effects on pericardial and pleural effusion and survival in esophageal cancer. Radiotherapy and Oncology, 2016, 121, 70-74.	0.6	12
131	Outcomes and toxicity following high-dose radiation therapy in 15 fractions for non-small cell lung cancer. Practical Radiation Oncology, 2017, 7, 433-441.	2.1	12
132	Influence of Surveillance PET/CT on Detection of Early Recurrence After Definitive Radiation in Stage III Non–small-cell Lung Cancer. Clinical Lung Cancer, 2017, 18, 141-148.	2.6	12
133	Patient-reported lung symptoms as an early signal of impending radiation pneumonitis in patients with non-small cell lung cancer treated with chemoradiation: an observational study. Quality of Life Research, 2018, 27, 1563-1570.	3.1	12
134	Radiation Oncology Strategies to Flatten the Curve During the Coronavirus Disease 2019 (COVID-19) Pandemic: Experience From a Large Tertiary Cancer Center. Advances in Radiation Oncology, 2020, 5, 567-572.	1.2	12
135	Probing thoracic dose patterns associated to pericardial effusion and mortality in patients treated with photons and protons for locally advanced non-small-cell lung cancer. Radiotherapy and Oncology, 2021, 160, 148-158.	0.6	12
136	Lyman–Kutcher–Burman normal tissue complication probability modeling for radiation-induced esophagitis in non-small cell lung cancer patients receiving proton radiotherapy. Radiotherapy and Oncology, 2020, 146, 200-204.	0.6	12
137	Polymorphism at the 3â€2-UTR of the thymidylate synthase gene: A potential predictor for outcomes in Caucasian patients with esophageal adenocarcinoma treated with preoperative chemoradiation. International Journal of Radiation Oncology Biology Physics, 2006, 64, 700-708.	0.8	11
138	Acute phase response before treatment predicts radiation esophagitis in non-small cell lung cancer. Radiotherapy and Oncology, 2014, 110, 493-498.	0.6	11
139	International Outreach: What Is the Responsibility of ASTRO and the Major International Radiation Oncology Societies?. International Journal of Radiation Oncology Biology Physics, 2014, 89, 481-484.	0.8	11
140	Radiation Dose, Local Disease Progression, and Overall Survival in Patients With Inoperable Non-Small Cell Lung Cancer After Concurrent Chemoradiation Therapy. International Journal of Radiation Oncology Biology Physics, 2018, 100, 452-461.	0.8	11
141	New Data-Driven Gated PET/CT Free of Misregistration Artifacts. International Journal of Radiation Oncology Biology Physics, 2021, 109, 1638-1646.	0.8	11
142	Association of lung fluorodeoxyglucose uptake with radiation pneumonitis after concurrent chemoradiation for non-small cell lung cancer. Clinical and Translational Radiation Oncology, 2017, 4, 1-7.	1.7	10
143	Blood-based biomarkers for precision medicine in lung cancer: precision radiation therapy. Translational Lung Cancer Research, 2017, 6, 661-669.	2.8	10
144	Locoregional Control, Overall Survival, and Disease-Free Survival in Stage IIIA (N2) Non–Small-Cell Lung Cancer: Analysis of Resected and Unresected Patients. Clinical Lung Cancer, 2020, 21, e294-e301.	2.6	10

#	Article	IF	CITATIONS
145	A Multi-Institutional Analysis of Radiation Dosimetric Predictors of Toxicity After Trimodality Therapy for Esophageal Cancer. Practical Radiation Oncology, 2021, 11, e415-e425.	2.1	10
146	A research protocol for a pilot randomized controlled trial designed to examine the feasibility of a couple-based mind-body intervention for patients with metastatic lung cancer and their partners. Pilot and Feasibility Studies, 2018, 4, 37.	1.2	9
147	Polymorphisms in BMP2/BMP4, with estimates of mean lung dose, predict radiation pneumonitis among patients receiving definitive radiotherapy for non-small cell lung cancer. Oncotarget, 2017, 8, 43080-43090.	1.8	9
148	Radiation-Induced Esophagitis in Non-Small-Cell Lung Cancer Patients: Voxel-Based Analysis and NTCP Modeling. Cancers, 2022, 14, 1833.	3.7	9
149	Out of the darkness and into the light: New strategies for improving treatments for locally advanced non-small cell lung cancer. Cancer Letters, 2018, 421, 59-62.	7.2	8
150	Radiotherapy clinical trial enrollment during the COVID-19 pandemic. Acta Oncológica, 2021, 60, 312-315.	1.8	8
151	The Pulmonary Fibrosis Associated MUC5B Promoter Polymorphism Is Prognostic of the Overall Survival in Patients with Non–Small Cell Lung Cancer (NSCLC) Receiving Definitive Radiotherapy. Translational Oncology, 2017, 10, 197-202.	3.7	7
152	Effectively Conducting Oncology Clinical Trials During the COVID-19 Pandemic. Advances in Radiation Oncology, 2021, 6, 100676.	1.2	7
153	Geometric and dosimetric accuracy of deformable image registration between averageâ€intensity images for 4DCTâ€based adaptive radiotherapy for nonâ€small cell lung cancer. Journal of Applied Clinical Medical Physics, 2021, 22, 156-167.	1.9	7
154	Recursive Partitioning Analysis Identifies Pretreatment Risk Groups for the Utility of Induction Chemotherapy Before Definitive Chemoradiation Therapy in Esophageal Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 99, 407-416.	0.8	6
155	Cost Analysis of PET/CT Versus CT as Surveillance for Stage III Non–Small-Cell Lung Cancer After Definitive Radiation Therapy. Clinical Lung Cancer, 2018, 19, e517-e528.	2.6	6
156	Development and application of an elastic net logistic regression model to investigate the impact of cardiac substructure dose on radiation-induced pericardial effusion in patients with NSCLC. Acta Oncológica, 2020, 59, 1193-1200.	1.8	6
157	T-Cell Receptor Profiling and Prognosis After Stereotactic Body Radiation Therapy For Stage I Non-Small-Cell Lung Cancer. Frontiers in Immunology, 2021, 12, 719285.	4.8	6
158	Patterns of metastatic progression after definitive radiation therapy for early-stage and locally advanced non-small cell lung cancer. Clinical and Experimental Metastasis, 2017, 34, 315-322.	3.3	5
159	Differences in Normal Tissue Response in the Esophagus Between Proton and Photon Radiation Therapy for Non-Small Cell Lung Cancer Using InAVivo Imaging Biomarkers. International Journal of Radiation Oncology Biology Physics, 2017, 99, 1013-1020.	0.8	5
160	The Potential of Heavy-Ion Therapy to Improve Outcomes for Locally Advanced Non-Small Cell Lung Cancer. Frontiers in Oncology, 2017, 7, 201.	2.8	5
161	Prognosis of severe lymphopenia after postoperative radiotherapy in non-small cell lung cancer: Results of a long-term follow up study. Clinical and Translational Radiation Oncology, 2021, 28, 54-61.	1.7	5
162	Nomograms incorporating genetic variants in <scp>BMP</scp> /Smad4/Hamp pathway to predict disease outcomes after definitive radiotherapy for nonâ€small cell lung cancer. Cancer Medicine, 2018, 7, 2247-2255.	2.8	4

#	Article	IF	CITATIONS
163	Predictive performance of different NTCP techniques for radiation-induced esophagitis in NSCLC patients receiving proton radiotherapy. Scientific Reports, 2022, 12, .	3.3	4
164	The Road Less Traveled: Should We Omit Prophylactic Cranial Irradiation for Patients With Small Cell Lung Cancer?. Clinical Lung Cancer, 2018, 19, 289-293.	2.6	3
165	The Reality of Randomized Controlled Trials for Assessing the Benefit of Proton Therapy: Critically Examining the Intent-to-Treat Principle in the Presence of Insurance Denial. Advances in Radiation Oncology, 2021, 6, 100635.	1.2	3
166	Functional promoter rs189037 variant of ATM is associated withÂdecrease in lung diffusing capacity after irradiation for non–small-cell lung cancer. Chronic Diseases and Translational Medicine, 2018, 4, 59-66.	1.2	2
167	Enhancing clinical trial enrollment at MD Anderson Cancer Center satellite community campuses. Acta Oncológica, 2019, 58, 1135-1137.	1.8	2
168	Thoracic Radiation Oncology Clinical Trial Accrual and Reasons for Nonenrollment: Results of a Large, Prospective, Multiyear Analysis. International Journal of Radiation Oncology Biology Physics, 2020, 107, 897-908.	0.8	2
169	Postoperative Radiotherapy for Locally Advanced NSCLC: Implications for Shifting to Conformal, High-Risk Fields. Clinical Lung Cancer, 2021, 22, 225-233.e7.	2.6	2
170	Novel Hybrid Scattering- and Scanning-Beam Proton Therapy Approach. International Journal of Particle Therapy, 2016, 3, 37-50.	1.8	2
171	Trends and Outcomes of Proton Radiation Therapy Use for Non–Small Cell Lung Cancer. International Journal of Particle Therapy, 2018, 5, 18-27.	1.8	2
172	In Reply to Jin etÂal. International Journal of Radiation Oncology Biology Physics, 2016, 96, 481-482.	0.8	1
173	DNA repair capacity correlates with standardized uptake values from 18 F-fluorodeoxyglucose positron emission tomography/CT in patients with advanced non–small-cell lung cancer. Chronic Diseases and Translational Medicine, 2018, 4, 109-116.	1.2	1
174	Impact of intra-fractional motion on dose distributions in lung IMRT. Journal of Radiotherapy in Practice, 2021, 20, 12-16.	0.5	1
175	Toward Improved Outcomes for Patients With Lung Cancer Globally: The Essential Role of Radiology and Nuclear Medicine. JCO Global Oncology, 2022, , .	1.8	1
176	Health Care Resource Utilization for Esophageal Cancer Using Proton versus Photon Radiation Therapy. International Journal of Particle Therapy, 2022, 9, 18-27.	1.8	1
177	Evaluation of conventional radiotherapy vs. conformal radiotherapy in the treatment of non-small-cell lung cancer after surgical resection. Chinese-German Journal of Clinical Oncology, 2007, 6, 514-518.	0.1	Ο
178	Patterns and correlates of treatment failure in relation to isodose distribution in non-small cell lung cancer: An analysis of 1522 patients in the modern era. Radiotherapy and Oncology, 2017, 125, 325-330.	0.6	0
179	Protocol-in-a-Day Workshop: A Lean Approach to Clinical Trial Development and Focus on Junior Faculty Development. Advances in Radiation Oncology, 2019, 4, 439-442.	1.2	0
180	Multi-institutional Evaluation of Curative Intent Chemoradiotherapy for Patients With Clinical T1N0 Esophageal Adenocarcinoma. Advances in Radiation Oncology, 2020, 5, 951-958.	1.2	0

0

#	Article	IF	CITATIONS
181	Considerations in randomized trials to test technologies. Journal of Thoracic Disease, 2018, 10, S3308-S3308.	1.4	0

182 Esophageal Adenocarcinoma., 0,, 31-113.