Kyoung-Jin Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3460645/publications.pdf

Version: 2024-02-01

257450 243625 2,103 47 24 44 citations g-index h-index papers 49 49 49 3699 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Glycogen Storage Disease Phenotypes Accompanying the Perturbation of the Methionine Cycle in NDRG3-Deficient Mouse Livers. Cells, 2022, 11, 1536.	4.1	1
2	GADD45 \hat{l}^2 Regulates Hepatic Gluconeogenesis via Modulating the Protein Stability of FoxO1. Biomedicines, 2021, 9, 50.	3.2	5
3	Mitochondrial Transplantation as a Novel Therapeutic Strategy for Mitochondrial Diseases. International Journal of Molecular Sciences, 2021, 22, 4793.	4.1	46
4	Metabolic Spectrum of Liver Failure in Type 2 Diabetes and Obesity: From NAFLD to NASH to HCC. International Journal of Molecular Sciences, 2021, 22, 4495.	4.1	56
5	Depletion of Janus kinase-2 promotes neuronal differentiation of mouse embryonic stem cells. BMB Reports, 2021, , .	2.4	O
6	Depletion of Janus kinase-2 promotes neuronal differentiation of mouse embryonic stem cells. BMB Reports, 2021, 54, 626-631.	2.4	1
7	Dual roles of ULK1 (unc-51 like autophagy activating kinase 1) in cytoprotection against lipotoxicity. Autophagy, 2020, 16, 86-105.	9.1	41
8	Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32433-32442.	7.1	200
9	The transcription factor PITX1 drives astrocyte differentiation by regulating the SOX9 gene. Journal of Biological Chemistry, 2020, 295, 13677-13690.	3.4	10
10	GATA3 induces the upregulation of UCP-1 by directly binding to PGC-1α during adipose tissue browning. Metabolism: Clinical and Experimental, 2020, 109, 154280.	3.4	12
11	Nurr1 performs its anti-inflammatory function by regulating RasGRP1 expression in neuro-inflammation. Scientific Reports, 2020, 10, 10755.	3.3	17
12	IDH1-dependent \hat{l} ±-KG regulates brown fat differentiation and function by modulating histone methylation. Metabolism: Clinical and Experimental, 2020, 105, 154173.	3.4	15
13	Roles of Protein Histidine Phosphatase 1 (PHPT1) in Brown Adipocyte Differentiation. Journal of Microbiology and Biotechnology, 2020, 30, 306-312.	2.1	4
14	The Role of Adipose Tissue Mitochondria: Regulation of Mitochondrial Function for the Treatment of Metabolic Diseases. International Journal of Molecular Sciences, 2019, 20, 4924.	4.1	159
15	Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes. Cell Death and Disease, 2019, 10, 835.	6.3	203
16	Adipose Tissue-Derived Signatures for Obesity and Type 2 Diabetes: Adipokines, Batokines and MicroRNAs. Journal of Clinical Medicine, 2019, 8, 854.	2.4	116
17	The Latest Insights into Adipokines in Diabetes. Journal of Clinical Medicine, 2019, 8, 1874.	2.4	19
18	Protein Tyrosine Phosphatase, Receptor Type B (PTPRB) Inhibits Brown Adipocyte Differentiation through Regulation of VEGFR2 Phosphorylation. Journal of Microbiology and Biotechnology, 2019, 29, 645-650.	2.1	9

#	Article	IF	CITATIONS
19	Loss of the E3 ubiquitin ligase MKRN1 represses diet-induced metabolic syndrome through AMPK activation. Nature Communications, 2018, 9, 3404.	12.8	50
20	Crystal structures of two forms of the Acanthamoeba polyphaga mimivirus Rab GTPase. Archives of Virology, 2017, 162, 3407-3416.	2.1	5
21	Metabolic Adaptation in Obesity and Type II Diabetes: Myokines, Adipokines and Hepatokines. International Journal of Molecular Sciences, 2017, 18, 8.	4.1	148
22	HDAC11 Inhibits Myoblast Differentiation through Repression of MyoD-Dependent Transcription. Molecules and Cells, 2017, 40, 667-676.	2.6	24
23	Insulin-Inducible SMILE Inhibits Hepatic Gluconeogenesis. Diabetes, 2016, 65, 62-73.	0.6	24
24	Structural Study of the HD-PTP Bro1 Domain in a Complex with the Core Region of STAM2, a Subunit of ESCRT-0. PLoS ONE, 2016, 11, e0149113.	2.5	20
25	Small Molecules Facilitate Single Factor-Mediated Hepatic Reprogramming. Cell Reports, 2016, 15, 814-829.	6.4	61
26	Effect of BI-1 on insulin resistance through regulation of CYP2E1. Scientific Reports, 2016, 6, 32229.	3.3	16
27	Set7/9, a methyltransferase, regulates the thermogenic program during brown adipocyte differentiation through the modulation of p53 acetylation. Molecular and Cellular Endocrinology, 2016, 431, 46-53.	3.2	14
28	c-Jun regulates adipocyte differentiation via the KLF15-mediated mode. Biochemical and Biophysical Research Communications, 2016, 469, 552-558.	2.1	28
29	Profiling analysis of protein tyrosine phosphatases during neuronal differentiation. Neuroscience Letters, 2016, 612, 219-224.	2.1	7
30	Methyltransferase and demethylase profiling studies during brown adipocyte differentiation. BMB Reports, 2016, 49, 388-393.	2.4	14
31	DUSP4 Regulates Neuronal Differentiation and Calcium Homeostasis by Modulating ERK1/2 Phosphorylation. Stem Cells and Development, 2015, 24, 686-700.	2.1	33
32	Recent Advances in Proteomic Studies of Adipose Tissues and Adipocytes. International Journal of Molecular Sciences, 2015, 16, 4581-4599.	4.1	31
33	Intracellular annexin A2 regulates NF-κB signaling by binding to the p50 subunit: implications for gemcitabine resistance in pancreatic cancer. Cell Death and Disease, 2015, 6, e1606-e1606.	6.3	64
34	MAP kinase phosphatase 3 inhibits brown adipocyte differentiation via regulation of Erk phosphorylation. Molecular and Cellular Endocrinology, 2015, 416, 70-76.	3.2	7
35	Silica nanoparticles inhibit brown adipocyte differentiation via regulation of p38 phosphorylation. Nanotechnology, 2015, 26, 435101.	2.6	8
36	Identification of DNA Aptamers toward Epithelial Cell Adhesion Molecule via Cell-SELEX. Molecules and Cells, 2014, 37, 742-746.	2.6	48

#	Article	IF	CITATIONS
37	Transcriptional regulators of hepatic gluconeogenesis. Archives of Pharmacal Research, 2013, 36, 189-200.	6.3	56
38	Reply:. Hepatology, 2013, 57, 2091-2091.	7.3	3
39	CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis. BMB Reports, 2013, 46, 567-574.	2.4	173
40	TCF7L2 Modulates Glucose Homeostasis by Regulating CREB- and FoxO1-Dependent Transcriptional Pathway in the Liver. PLoS Genetics, 2012, 8, e1002986.	3.5	70
41	Protein arginine methyltransferase 1 regulates hepatic glucose production in a FoxO1-dependent manner. Hepatology, 2012, 56, 1546-1556.	7.3	57
42	Atypical antipsychotic drugs perturb AMPK-dependent regulation of hepatic lipid metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E624-E632.	3.5	54
43	TORC2 Regulates Hepatic Insulin Signaling via a Mammalian Phosphatidic Acid Phosphatase, LIPIN1. Cell Metabolism, 2009, 9, 240-251.	16.2	76
44	Rapid analysis of proteomic biomarkers expressed in human endometrial stromal cells during decidualization. Archives of Pharmacal Research, 2008, 31, 1247-1255.	6.3	3
45	Identification of Proteomic Biomarkers of Preeclampsia in Amniotic Fluid Using SELDI-TOF Mass Spectrometry. Reproductive Sciences, 2008, 15, 457-468.	2.5	48
46	Role of phospholipase D2 in antiâ€apoptotic signaling through increased expressions of Bclâ€2 and Bclâ€xL. Journal of Cellular Biochemistry, 2007, 101, 1409-1422.	2.6	30
47	Hippocalcin increases phospholipase D2 expression through extracellular signal-regulated kinase activation and lysophosphatidic acid potentiates the hippocalcin-induced phospholipase D2 expression. Journal of Cellular Biochemistry, 2006, 97, 1052-1065.	2.6	16