List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3460619/publications.pdf Version: 2024-02-01

		4831	4983
297	32,708	87	173
papers	citations	h-index	g-index
332	332	332	38432
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mild hyperthermia accelerates doxorubicin clearance from tumour-extravasated temperature-sensitive liposomes. Nanotheranostics, 2022, 6, 230-242.	2.7	10
2	Innate but Not Adaptive Immunity Regulates Lung Recovery from Chronic Exposure to Graphene Oxide Nanosheets. Advanced Science, 2022, 9, e2104559.	5.6	13
3	Full-bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene microtransistor depth neural probes. Nature Nanotechnology, 2022, 17, 301-309.	15.6	49
4	Hazard assessment of abraded thermoplastic composites reinforced with reduced graphene oxide. Journal of Hazardous Materials, 2022, 435, 129053.	6.5	16
5	Nano-omics: nanotechnology-based multidimensional harvesting of the blood-circulating cancerome. Nature Reviews Clinical Oncology, 2022, 19, 551-561.	12.5	25
6	Adenoviral Mediated Delivery of OSKM Factors Induces Partial Reprogramming of Mouse Cardiac Cells In Vivo. Advanced Therapeutics, 2021, 4, 2000141.	1.6	7
7	Deep Tissue Translocation of Graphene Oxide Sheets in Human Glioblastoma 3D Spheroids and an Orthotopic Xenograft Model. Advanced Therapeutics, 2021, 4, 2000109.	1.6	14
8	Trends in Microâ€/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. Advanced Materials, 2021, 33, e2002047.	11.1	256
9	Enhanced liquid phase exfoliation of graphene in water using an insoluble bis-pyrene stabiliser. Faraday Discussions, 2021, 227, 46-60.	1.6	12
10	Nanotools for Sepsis Diagnosis and Treatment. Advanced Healthcare Materials, 2021, 10, e2001378.	3.9	53
11	Dynamic interactions and intracellular fate of label-free, thin graphene oxide sheets within mammalian cells: role of lateral sheet size. Nanoscale Advances, 2021, 3, 4166-4185.	2.2	17
12	Graphene active sensor arrays for long-term and wireless mapping of wide frequency band epicortical brain activity. Nature Communications, 2021, 12, 211.	5.8	44
13	Nanoparticle-Enabled Enrichment of Longitudinal Blood Proteomic Fingerprints in Alzheimer's Disease. ACS Nano, 2021, 15, 7357-7369.	7.3	17
14	Graphene oxide prevents lateral amygdala dysfunctional synaptic plasticity and reverts long lasting anxiety behavior in rats. Biomaterials, 2021, 271, 120749.	5.7	15
15	A method for the measurement of mass and number of graphene oxide sheets in suspension based on non-spherical approximations. 2D Materials, 2021, 8, 035044.	2.0	3
16	Graphene Oxide Nanosheets Interact and Interfere with SARSâ€CoVâ€2 Surface Proteins and Cell Receptors to Inhibit Infectivity. Small, 2021, 17, e2101483.	5.2	46
17	Transient reprogramming of postnatal cardiomyocytes to a dedifferentiated state. PLoS ONE, 2021, 16, e0251054.	1.1	4
18	Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes. Carbon, 2021, 176, 458-469.	5.4	8

#	Article	IF	CITATIONS
19	Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nature Nanotechnology, 2021, 16, 1019-1029.	15.6	144
20	Reasons for success and lessons learnt from nanoscale vaccines against COVID-19. Nature Nanotechnology, 2021, 16, 843-850.	15.6	40
21	The impact of graphene oxide sheet lateral dimensions on their pharmacokinetic and tissue distribution profiles in mice. Journal of Controlled Release, 2021, 338, 330-340.	4.8	19
22	Biomedical applications: general discussion. Faraday Discussions, 2021, 227, 245-258.	1.6	2
23	Multiparametric Profiling of Engineered Nanomaterials: Unmasking the Surface Coating Effect. Advanced Science, 2020, 7, 2002221.	5.6	24
24	Splenic Capture and <i>In Vivo</i> Intracellular Biodegradation of Biological-Grade Graphene Oxide Sheets. ACS Nano, 2020, 14, 10168-10186.	7.3	51
25	Nitric oxide-dependent biodegradation of graphene oxide reduces inflammation in the gastrointestinal tract. Nanoscale, 2020, 12, 16730-16737.	2.8	26
26	Nose-to-Brain Translocation and Cerebral Biodegradation of Thin Graphene Oxide Nanosheets. Cell Reports Physical Science, 2020, 1, 100176.	2.8	10
27	The biomolecule corona of lipid nanoparticles contains circulating cell-free DNA. Nanoscale Horizons, 2020, 5, 1476-1486.	4.1	19
28	Intracerebral Injection of Graphene Oxide Nanosheets Mitigates Microglial Activation Without Inducing Acute Neurotoxicity: A Pilot Comparison to Other Nanomaterials. Small, 2020, 16, e2004029.	5.2	19
29	Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design. JPhys Materials, 2020, 3, 034009.	1.8	29
30	Sizeâ€Dependent Pulmonary Impact of Thin Graphene Oxide Sheets in Mice: Toward Safeâ€byâ€Design. Advanced Science, 2020, 7, 1903200.	5.6	44
31	Stable, concentrated, biocompatible, and defect-free graphene dispersions with positive charge. Nanoscale, 2020, 12, 12383-12394.	2.8	23
32	Nano-scavengers for blood biomarker discovery in ovarian carcinoma. Nano Today, 2020, 34, 100901.	6.2	19
33	Graphene oxide nanosheets modulate spinal glutamatergic transmission and modify locomotor behaviour in an <i>in vivo</i> zebrafish model. Nanoscale Horizons, 2020, 5, 1250-1263.	4.1	21
34	Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nature Nanotechnology, 2020, 15, 164-166.	15.6	69
35	Thin graphene oxide nanoflakes modulate glutamatergic synapses in the amygdala cultured circuits: Exploiting synaptic approaches to anxiety disorders. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 26, 102174.	1.7	10
36	Nextâ€Generation Sequencing Reveals Differential Responses to Acute versus Longâ€Term Exposures to Graphene Oxide in Human Lung Cells. Small, 2020, 16, e1907686.	5.2	18

#	Article	IF	CITATIONS
37	The challenge of recognising sepsis: Future nanotechnology solutions. Journal of the Intensive Care Society, 2020, 21, 241-246.	1.1	10
38	Grouping all carbon nanotubes into a single substance category is scientifically unjustified. Nature Nanotechnology, 2020, 15, 164-164.	15.6	70
39	Optimizing the Geometry of Photoacoustically Active Gold Nanoparticles for Biomedical Imaging. ACS Photonics, 2020, 7, 646-652.	3.2	49
40	Palladium catalysed C–H arylation of pyrenes: access to a new class of exfoliating agents for water-based graphene dispersions. Chemical Science, 2020, 11, 2472-2478.	3.7	10
41	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
42	Protein corona fingerprinting to differentiate sepsis from non-infectious systemic inflammation. Nanoscale, 2020, 12, 10240-10253.	2.8	45
43	Nanoscale nights of COVID-19. Nature Nanotechnology, 2020, 15, 343-344.	15.6	46
44	Graphene oxide: A growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels. Acta Biomaterialia, 2019, 96, 271-280.	4.1	100
45	Graphene oxide as a 2D platform for complexation and intracellular delivery of siRNA. Nanoscale, 2019, 11, 13863-13877.	2.8	35
46	Thermal monitoring during photothermia: hybrid probes for simultaneous plasmonic heating and near-infrared optical nanothermometry. Theranostics, 2019, 9, 7298-7312.	4.6	32
47	Selective Liposomal Transport through Blood Brain Barrier Disruption in Ischemic Stroke Reveals Two Distinct Therapeutic Opportunities. ACS Nano, 2019, 13, 12470-12486.	7.3	66
48	Enhanced Intraliposomal Metallic Nanoparticle Payload Capacity Using Microfluidic-Assisted Self-Assembly. Langmuir, 2019, 35, 13318-13331.	1.6	14
49	Exposure to graphene oxide sheets alters the expression of reference genes used for real-time RT-qPCR normalization. Scientific Reports, 2019, 9, 12520.	1.6	8
50	Human In Vivo Corona: The Human In Vivo Biomolecule Corona onto PEGylated Liposomes: A Proof-of-Concept Clinical Study (Adv. Mater. 4/2019). Advanced Materials, 2019, 31, 1970027.	11.1	2
51	Biocompatibility and biodegradability of 2D materials: graphene and beyond. Chemical Communications, 2019, 55, 5540-5546.	2.2	158
52	3D Organotypic Spinal Cultures: Exploring Neuron and Neuroglia Responses Upon Prolonged Exposure to Graphene Oxide. Frontiers in Systems Neuroscience, 2019, 13, 1.	1.2	40
53	Graphene Oxide Flakes Tune Excitatory Neurotransmission in Vivo by Targeting Hippocampal Synapses. Nano Letters, 2019, 19, 2858-2870.	4.5	43
54	Charge-tunable graphene dispersions in water made with amphoteric pyrene derivatives. Molecular Systems Design and Engineering, 2019, 4, 503-510.	1.7	13

#	Article	IF	CITATIONS
55	Hampering brain tumor proliferation and migration using peptide nanofiber:si <i>PLK1</i> / <i>MMP2</i> complexes. Nanomedicine, 2019, 14, 3127-3142.	1.7	7
56	Non-viral, Tumor-free Induction of Transient Cell Reprogramming in Mouse Skeletal Muscle to Enhance Tissue Regeneration. Molecular Therapy, 2019, 27, 59-75.	3.7	24
57	A novel scavenging tool for cancer biomarker discovery based on the blood-circulating nanoparticle protein corona. Biomaterials, 2019, 188, 118-129.	5.7	62
58	Non-cytotoxic carbon nanocapsules synthesized via one-pot filling and end-closing of multi-walled carbon nanotubes. Carbon, 2019, 141, 782-793.	5.4	16
59	The Human In Vivo Biomolecule Corona onto PEGylated Liposomes: A Proofâ€ofâ€Concept Clinical Study. Advanced Materials, 2019, 31, e1803335.	11.1	116
60	Graphene Oxide Nanosheets and Neural System: From Synaptic Modulation to Neuroinflammation. Biophysical Journal, 2018, 114, 672a.	0.2	1
61	Formation of protein corona in vivo affects drug release from temperature-sensitive liposomes. Journal of Controlled Release, 2018, 276, 157-167.	4.8	65
62	Graphene Oxide Elicits Membrane Lipid Changes and Neutrophil Extracellular Trap Formation. CheM, 2018, 4, 334-358.	5.8	68
63	Cytokine Profiling of Primary Human Macrophages Exposed to Endotoxinâ€Free Graphene Oxide: Sizeâ€Independent NLRP3 Inflammasome Activation. Advanced Healthcare Materials, 2018, 7, 1700815.	3.9	67
64	Live Imaging of Label-Free Graphene Oxide Reveals Critical Factors Causing Oxidative-Stress-Mediated Cellular Responses. ACS Nano, 2018, 12, 1373-1389.	7.3	83
65	Impact of graphene oxide on human placental trophoblast viability, functionality and barrier integrity. 2D Materials, 2018, 5, 035014.	2.0	12
66	Covalent chemical functionalization enhances the biodegradation of graphene oxide. 2D Materials, 2018, 5, 015020.	2.0	63
67	Graphene oxide is degraded by neutrophils and the degradation products are non-genotoxic. Nanoscale, 2018, 10, 1180-1188.	2.8	148
68	<i>In vivo</i> formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale, 2018, 10, 1256-1264.	2.8	286
69	Small, Thin Graphene Oxide Is Anti-inflammatory Activating Nuclear Factor Erythroid 2-Related Factor 2 <i>via</i> Metabolic Reprogramming. ACS Nano, 2018, 12, 11949-11962.	7.3	43
70	The attenuated spline reconstruction technique for single photon emission computed tomography. Journal of the Royal Society Interface, 2018, 15, 20180509.	1.5	12
71	Graphene-based papers as substrates for cell growth: Characterisation and impact on mammalian cells. FlatChem, 2018, 12, 17-25.	2.8	20
72	Immunological impact of graphene oxide sheets in the abdominal cavity is governed by surface reactivity. Archives of Toxicology, 2018, 92, 3359-3379.	1.9	24

#	Article	IF	CITATIONS
73	Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano, 2018, 12, 10582-10620.	7.3	438
74	A blueprint for the synthesis and characterisation of thin graphene oxide with controlled lateral dimensions for biomedicine. 2D Materials, 2018, 5, 035020.	2.0	73
75	Graphene Oxide Nanosheets Target Excitatory Synapses in the Hippocampus: Reversible Down Regulation of Glutamate Neurotransmission In-Vivo. Biophysical Journal, 2018, 114, 672a.	0.2	2
76	107â€Enhanced endothelial cell coverage on graphene coated stents. , 2018, , .		0
77	Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nature Nanotechnology, 2017, 12, 343-350.	15.6	440
78	Culture Media Critically Influence Graphene Oxide Effects on Plasma Membranes. CheM, 2017, 2, 322-323.	5.8	17
79	High-Accuracy Determination of Cytotoxic Responses from Graphene Oxide Exposure Using Imaging Flow Cytometry. Methods in Molecular Biology, 2017, 1570, 287-300.	0.4	3
80	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	7.3	4
81	Optical diagnostics: Nanosensors for liquid biopsies. Nature Biomedical Engineering, 2017, 1, .	11.6	2
82	Graphene materials as 2D non-viral gene transfer vector platforms. Gene Therapy, 2017, 24, 123-132.	2.3	66
83	Primary microglia maintain their capacity to function despite internalisation and intracellular loading with carbon nanotubes. Nanoscale Horizons, 2017, 2, 284-296.	4.1	7
84	Evolution of the nanoparticle corona. Nature Nanotechnology, 2017, 12, 288-290.	15.6	243
85	Direct visualization of carbon nanotube degradation in primary cells by photothermal imaging. Nanoscale, 2017, 9, 4642-4645.	2.8	25
86	Single-cell mass cytometry and transcriptome profiling reveal the impact of graphene on human immune cells. Nature Communications, 2017, 8, 1109.	5.8	111
87	Graphene in the Design and Engineering of Nextâ€Generation Neural Interfaces. Advanced Materials, 2017, 29, 1700909.	11.1	129
88	Liposomeâ€Indocyanine Green Nanoprobes for Optical Labeling and Tracking of Human Mesenchymal Stem Cells Postâ€Transplantation In Vivo. Advanced Healthcare Materials, 2017, 6, 1700374.	3.9	18
89	Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Science Robotics, 2017, 2, .	9.9	594
90	Hypochlorite degrades 2D graphene oxide sheets faster than 1D oxidised carbon nanotubes and nanohorns. Npj 2D Materials and Applications, 2017, 1, .	3.9	26

#	Article	IF	CITATIONS
91	Transient transcription factor (<scp>OSKM</scp>) expression is key towards clinical translation of <i>inÂvivo</i> cell reprogramming. EMBO Molecular Medicine, 2017, 9, 733-736.	3.3	21
92	In Vivo Reprogramming Towards Pluripotency for Tissue Repair and Regeneration. Pancreatic Islet Biology, 2017, , 83-98.	0.1	0
93	Radiolabeling, whole-body single photon emission computed tomography/computed tomography imaging, and pharmacokinetics of carbon nanohorns in mice. International Journal of Nanomedicine, 2016, Volume 11, 3317-3330.	3.3	9
94	Purity of graphene oxide determines its antibacterial activity. 2D Materials, 2016, 3, 025025.	2.0	150
95	Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead. Advanced Materials, 2016, 28, 6052-6074.	11.1	335
96	Molecular and Genomic Impact of Large and Small Lateral Dimension Graphene Oxide Sheets on Human Immune Cells from Healthy Donors. Advanced Healthcare Materials, 2016, 5, 276-287.	3.9	90
97	The Effects of Extensive Glomerular Filtration of Thin Graphene Oxide Sheets on Kidney Physiology. ACS Nano, 2016, 10, 10753-10767.	7.3	70
98	Graphene Oxide Nanosheets Reshape Synaptic Function in Cultured Brain Networks. ACS Nano, 2016, 10, 4459-4471.	7.3	133
99	Can Carbon Nanotubes Deliver on Their Promise in Biology? Harnessing Unique Properties for Unparalleled Applications. ACS Central Science, 2016, 2, 190-200.	5.3	91
100	Synthesis of few-layered, high-purity graphene oxide sheets from different graphite sources for biology. 2D Materials, 2016, 3, 014006.	2.0	103
101	Chemical Components for the Design of Temperature-Responsive Vesicles as Cancer Therapeutics. Chemical Reviews, 2016, 116, 3883-3918.	23.0	132
102	Engineering thermosensitive liposome-nanoparticle hybrids loaded with doxorubicin for heat-triggered drug release. International Journal of Pharmaceutics, 2016, 514, 133-141.	2.6	37
103	Translating graphene and 2D materials into medicine. Nature Reviews Materials, 2016, 1, .	23.3	48
104	Thickness of functionalized graphene oxide sheets plays critical role in tissue accumulation and urinary excretion: A pilot PET/CT study. Applied Materials Today, 2016, 4, 24-30.	2.3	61
105	Different chemical strategies to aminate oxidised multi-walled carbon nanotubes for siRNA complexation and delivery. Journal of Materials Chemistry B, 2016, 4, 431-441.	2.9	17
106	Intracellular degradation of chemically functionalized carbon nanotubes using a long-term primary microglial culture model. Nanoscale, 2016, 8, 590-601.	2.8	52
107	Time-evolution of in vivo protein corona onto blood-circulating PEGylated liposomal doxorubicin (DOXIL) nanoparticles. Nanoscale, 2016, 8, 6948-6957.	2.8	173
108	Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: Spatial to ultra-structural analyses. Journal of Controlled Release, 2016, 224, 22-32.	4.8	48

#	Article	IF	CITATIONS
109	Engineering Cell Fate for Tissue Regeneration by In Vivo Transdifferentiation. Stem Cell Reviews and Reports, 2016, 12, 129-139.	5.6	9
110	Gadolinium-functionalised multi-walled carbon nanotubes as a T 1 contrast agent for MRI cell labelling and tracking. Carbon, 2016, 97, 126-133.	5.4	50
111	Detection of Endotoxin Contamination of Graphene Based Materials Using the TNF-α Expression Test and Guidelines for Endotoxin-Free Graphene Oxide Production. PLoS ONE, 2016, 11, e0166816.	1.1	84
112	Controlled Chemical Derivatisation of Carbon Nanotubes with Imaging, Targeting, and Therapeutic Capabilities. Chemistry - A European Journal, 2015, 21, 14886-14892.	1.7	18
113	Molecular impact of graphene oxide with different shape dimension on human immune cells. , 2015, 3, P217.		3
114	Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets. Chemical Science, 2015, 6, 3952-3964.	3.7	116
115	Design of Cationic Multiwalled Carbon Nanotubes as Efficient siRNA Vectors for Lung Cancer Xenograft Eradication. Bioconjugate Chemistry, 2015, 26, 1370-1379.	1.8	58
116	Biodegradation of carbon nanohorns in macrophage cells. Nanoscale, 2015, 7, 2834-2840.	2.8	48
117	Triggered doxorubicin release in solid tumors from thermosensitive liposome-peptide hybrids: Critical parameters and therapeutic efficacy. International Journal of Cancer, 2015, 137, 731-743.	2.3	34
118	Functional inhibition of β-catenin-mediatedWnt signaling by intracellular VHHantibodies. MAbs, 2015, 7, 180-191.	2.6	26
119	Peptide Nanofiber Complexes with siRNA for Deep Brain Gene Silencing by Stereotactic Neurosurgery. ACS Nano, 2015, 9, 1137-1149.	7.3	41
120	The current graphene safety landscape – a literature mining exercise. Nanoscale, 2015, 7, 6432-6435.	2.8	47
121	Microglia Determine Brain Region-Specific Neurotoxic Responses to Chemically Functionalized Carbon Nanotubes. ACS Nano, 2015, 9, 7815-7830.	7.3	86
122	Multifunctional carbon nanomaterial hybrids for magnetic manipulation and targeting. Biochemical and Biophysical Research Communications, 2015, 468, 454-462.	1.0	39
123	<i>In Vivo</i> Biomolecule Corona around Blood-Circulating, Clinically Used and Antibody-Targeted Lipid Bilayer Nanoscale Vesicles. ACS Nano, 2015, 9, 8142-8156.	7.3	274
124	Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. International Journal of Pharmaceutics, 2015, 482, 2-10.	2.6	95
125	Nanocomposite Hydrogels: 3D Polymer–Nanoparticle Synergies for On-Demand Drug Delivery. ACS Nano, 2015, 9, 4686-4697.	7.3	624
126	Controlled In Vivo Swimming of a Swarm of Bacteria‣ike Microrobotic Flagella. Advanced Materials, 2015, 27, 2981-2988.	11.1	440

#	Article	IF	CITATIONS
127	Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes. Biomaterials, 2015, 72, 20-28.	5.7	61
128	The winding road for carbon nanotubes in nanomedicine. Materials Today, 2015, 18, 12-19.	8.3	115
129	Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials, 2015, 37, 415-424.	5.7	165
130	Monoclonal antibody-targeted, temperature-sensitive liposomes: In vivo tumor chemotherapeutics in combination with mild hyperthermia. Journal of Controlled Release, 2014, 196, 332-343.	4.8	74
131	Graphene for multi-functional synthetic biology: The last â€ [~] zeitgeist' in nanomedicine. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1638-1649.	1.0	56
132	Exploring the Interface of Graphene and Biology. Science, 2014, 344, 261-263.	6.0	285
133	Induced pluripotent stem (iPS) cells: A new source for cell-based therapeutics?. Journal of Controlled Release, 2014, 185, 37-44.	4.8	60
134	Grapheneâ€Based Electroresponsive Scaffolds as Polymeric Implants for Onâ€Demand Drug Delivery. Advanced Healthcare Materials, 2014, 3, 1334-1343.	3.9	134
135	<i>In vivo</i> cell reprogramming to pluripotency: exploring a novel tool for cell replenishment and tissue regeneration. Biochemical Society Transactions, 2014, 42, 711-716.	1.6	9
136	siRNA liposome-gold nanorod vectors for multispectral optoacoustic tomography theranostics. Nanoscale, 2014, 6, 13451-13456.	2.8	30
137	The relationship between the diameter of chemically-functionalized multi-walled carbon nanotubes and their organ biodistribution profiles inÂvivo. Biomaterials, 2014, 35, 9517-9528.	5.7	57
138	Graphene devices for life. Nature Nanotechnology, 2014, 9, 744-745.	15.6	162
139	The engineering of doxorubicin-loaded liposome-quantum dot hybrids for cancer theranostics. Chinese Physics B, 2014, 23, 087805.	0.7	7
140	Generation of induced pluripotent stem cells from virus-free inÂvivo reprogramming of BALB/c mouse liver cells. Biomaterials, 2014, 35, 8312-8320.	5.7	16
141	Classification Framework for Grapheneâ€Based Materials. Angewandte Chemie - International Edition, 2014, 53, 7714-7718.	7.2	369
142	Development of Dual-Activity Vectors by Co-Envelopment of Adenovirus and SiRNA in Artificial Lipid Bilayers. PLoS ONE, 2014, 9, e114985.	1.1	6
143	Electroresponsive Polymer–Carbon Nanotube Hydrogel Hybrids for Pulsatile Drug Delivery In Vivo. Advanced Healthcare Materials, 2013, 2, 806-811.	3.9	98
144	Pulmonary DWCNT exposure causes sustained local and low-level systemic inflammatory changes in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 412-420.	2.0	14

#	Article	IF	CITATIONS
145	Graphene Oxide: Purified Graphene Oxide Dispersions Lack In Vitro Cytotoxicity and In Vivo Pathogenicity (Adv. Healthcare Mater. 3/2013). Advanced Healthcare Materials, 2013, 2, 512-512.	3.9	4
146	Cationic Poly- <scp>l</scp> -lysine Dendrimer Complexes Doxorubicin and Delays Tumor Growth <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2013, 7, 1905-1917.	7.3	124
147	How do functionalized carbon nanotubes land on, bind to and pierce through model and plasma membranes. Nanoscale, 2013, 5, 10242.	2.8	61
148	Carbon nanotubes in medicine and biology — Safety and toxicology. Advanced Drug Delivery Reviews, 2013, 65, 2061-2062.	6.6	12
149	Carbon nanotubes in medicine & biology — Therapy and diagnostics. Advanced Drug Delivery Reviews, 2013, 65, 1897-1898.	6.6	25
150	Carbon nanotubes as vectors for gene therapy: Past achievements, present challenges and future goals. Advanced Drug Delivery Reviews, 2013, 65, 2023-2033.	6.6	147
151	Hemotoxicity of carbon nanotubes. Advanced Drug Delivery Reviews, 2013, 65, 2127-2134.	6.6	41
152	Pharmacology of carbon nanotubes: Toxicokinetics, excretion and tissue accumulation. Advanced Drug Delivery Reviews, 2013, 65, 2111-2119.	6.6	82
153	A high poly(ethylene glycol) density on graphene nanomaterials reduces the detachment of lipid–poly(ethylene glycol) and macrophage uptake. Acta Biomaterialia, 2013, 9, 4744-4753.	4.1	30
154	Asbestosâ€like Pathogenicity of Long Carbon Nanotubes Alleviated by Chemical Functionalization. Angewandte Chemie - International Edition, 2013, 52, 2274-2278.	7.2	153
155	Safety Considerations for Graphene: Lessons Learnt from Carbon Nanotubes. Accounts of Chemical Research, 2013, 46, 692-701.	7.6	285
156	Prospects and Challenges of Graphene in Biomedical Applications. Advanced Materials, 2013, 25, 2258-2268.	11.1	573
157	Ammonium and Guanidinium Dendron–Carbon Nanotubes by Amidation and Click Chemistry and their Use for siRNA Delivery. Small, 2013, 9, 3610-3619.	5.2	45
158	Purified Graphene Oxide Dispersions Lack In Vitro Cytotoxicity and In Vivo Pathogenicity. Advanced Healthcare Materials, 2013, 2, 433-441.	3.9	166
159	The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores. Biomaterials, 2013, 34, 3503-3510.	5.7	85
160	The effect of artificial lipid envelopment of Adenovirus 5 (Ad5) on liver de-targeting and hepatotoxicity. Biomaterials, 2013, 34, 1354-1363.	5.7	15
161	Peptide nanofibres as molecular transporters: from self-assembly to in vivo degradation. Faraday Discussions, 2013, 166, 181.	1.6	15
162	Autophagy and formation of tubulovesicular autophagosomes provide a barrier against nonviral gene delivery. Autophagy, 2013, 9, 667-682.	4.3	54

#	Article	IF	CITATIONS
163	Design, engineering and structural integrity of electro-responsive carbon nanotube- based hydrogels for pulsatile drug release. Journal of Materials Chemistry B, 2013, 1, 4593.	2.9	63
164	In vivo Reprogramming of Adult Somatic Cells to Pluripotency by Overexpression of Yamanaka Factors. Journal of Visualized Experiments, 2013, , e50837.	0.2	10
165	In Vivo Cell Reprogramming towards Pluripotency by Virus-Free Overexpression of Defined Factors. PLoS ONE, 2013, 8, e54754.	1.1	39
166	Functionalized Carbon Nanotubes in the Brain: Cellular Internalization and Neuroinflammatory Responses. PLoS ONE, 2013, 8, e80964.	1.1	89
167	Quasi first-principles Monte Carlo modeling of energy dissipation by low-energy electron beams in multi-walled carbon nanotube materials. Applied Physics Letters, 2012, 100, .	1.5	7
168	Anti-angiogenic poly-L-lysine dendrimer binds heparin and neutralizes its activity. Results in Pharma Sciences, 2012, 2, 9-15.	4.2	21
169	An electric-field responsive microsystem for controllable miniaturised drug delivery applications. Sensors and Actuators B: Chemical, 2012, 175, 100-105.	4.0	21
170	Lipid–Peptide Vesicle Nanoscale Hybrids for Triggered Drug Release by Mild Hyperthermia <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2012, 6, 9335-9346.	7.3	212
171	<i>In vivo</i> degradation of functionalized carbon nanotubes after stereotactic administration in the brain cortex. Nanomedicine, 2012, 7, 1485-1494.	1.7	104
172	Therapeutic Applications. , 2012, , 285-313.		6
173	Targeting carbon nanotubes against cancer. Chemical Communications, 2012, 48, 3911.	2.2	248
174	Liposome–Gold Nanorod Hybrids for High-Resolution Visualization Deep in Tissues. Journal of the American Chemical Society, 2012, 134, 13256-13258.	6.6	77
175	Degree of Chemical Functionalization of Carbon Nanotubes Determines Tissue Distribution and Excretion Profile. Angewandte Chemie - International Edition, 2012, 51, 6389-6393.	7.2	109
176	Design and Engineering of Multifunctional Quantum Dot-Based Nanoparticles for Simultaneous Therapeutic-Diagnostic Applications. Nanostructure Science and Technology, 2012, , 345-365.	0.1	6
177	Application of carbon nanotubes in neurology: clinical perspectives and toxicological risks. Archives of Toxicology, 2012, 86, 1009-1020.	1.9	50
178	Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials, 2012, 33, 3334-3343.	5.7	224
179	Pharmacokinetics & amp; tissue distribution of temperature-sensitive liposomal doxorubicin in tumor-bearing mice triggered with mild hyperthermia. Biomaterials, 2012, 33, 4608-4617.	5.7	103
180	Therapeutics, imaging and toxicity of nanomaterials in the central nervous system. Journal of Controlled Release, 2012, 161, 290-306.	4.8	63

#	Article	IF	CITATIONS
181	Carbon nanotube-mediated wireless cell permeabilization: drug and gene uptake. Nanomedicine, 2011, 6, 1709-1718.	1.7	31
182	Cytotoxic Assessment of Carbon Nanotube Interaction with Cell Cultures. Methods in Molecular Biology, 2011, 726, 299-312.	0.4	52
183	Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale, 2011, 3, 2627.	2.8	110
184	An Electric-Field Responsive Microsystem for Controllable Miniaturised Drug Delivery Applications. Procedia Engineering, 2011, 25, 984-987.	1.2	17
185	Simple model of bulk and surface excitation effects to inelastic scattering in low-energy electron beam irradiation of multi-walled carbon nanotubes. Journal of Applied Physics, 2011, 110, 054304.	1.1	24
186	Functionalised carbon nanotubes: high biocompatibility with lack of toxicity. International Journal of Nanotechnology, 2011, 8, 885.	0.1	14
187	Length-Dependent Retention of Carbon Nanotubes in the Pleural Space of Mice Initiates Sustained Inflammation and Progressive Fibrosis on the Parietal Pleura. American Journal of Pathology, 2011, 178, 2587-2600.	1.9	278
188	Liposomes: From a Clinically Established Drug Delivery System to a Nanoparticle Platform for Theranostic Nanomedicine. Accounts of Chemical Research, 2011, 44, 1094-1104.	7.6	606
189	Doxorubicin-loaded lipid-quantum dot hybrids: Surface topography and release properties. International Journal of Pharmaceutics, 2011, 416, 443-447.	2.6	54
190	Polyamine functionalized carbon nanotubes: synthesis, characterization, cytotoxicity and siRNA binding. Journal of Materials Chemistry, 2011, 21, 4850.	6.7	38
191	Making carbon nanotubes biocompatible and biodegradable. Chemical Communications, 2011, 47, 10182.	2.2	323
192	Antibody Covalent Immobilization on Carbon Nanotubes and Assessment of Antigen Binding. Small, 2011, 7, 2179-2187.	5.2	40
193	Cellular Uptake and Cytotoxic Impact of Chemically Functionalized and Polymer oated Carbon Nanotubes. Small, 2011, 7, 3230-3238.	5.2	84
194	Intracellular trafficking and gene expression of pH-sensitive, artificially enveloped adenoviruses in vitro and in vivo. Biomaterials, 2011, 32, 3085-3093.	5.7	36
195	Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1330-8.	3.3	437
196	Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10952-10957.	3.3	217
197	Physiologically Based Pharmacokinetic Modeling of Nanoparticles. ACS Nano, 2010, 4, 6303-6317.	7.3	313
198	Enhanced anticancer activity of multi-walled carbon nanotube–methotrexate conjugates using cleavable linkers. Chemical Communications, 2010, 46, 1494-1496.	2.2	131

#	Article	IF	CITATIONS
199	Energy loss of protons in carbon nanotubes: Experiments and calculations. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 1781-1785.	0.6	9
200	Nanoparticles functionalised with recombinant single chain Fv antibody fragments (scFv) for the magnetic resonance imaging of cancer cells. Biomaterials, 2010, 31, 1307-1315.	5.7	68
201	Functionalized Carbon Nanotubes for Probing and Modulating Molecular Functions. Chemistry and Biology, 2010, 17, 107-115.	6.2	104
202	Hybrid Polymerâ€Grafted Multiwalled Carbon Nanotubes for In vitro Gene Delivery. Small, 2010, 6, 2281-2291.	5.2	94
203	Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nature Materials, 2010, 9, 485-490.	13.3	267
204	Fibrillar pharmacology. Nature Materials, 2010, 9, 793-795.	13.3	39
205	Complement monitoring of carbon nanotubes. Nature Nanotechnology, 2010, 5, 382-383.	15.6	13
206	Systemic antiangiogenic activity of cationic poly-L-lysine dendrimer delays tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3966-3971.	3.3	97
207	Assessment of Cellular Uptake and Cytotoxicity of Carbon Nanotubes Using Flow Cytometry. Methods in Molecular Biology, 2010, 625, 123-134.	0.4	28
208	Enhanced cellular internalization and gene silencing with a series of cationic dendronâ€multiwalled carbon nanotube:siRNA complexes. FASEB Journal, 2010, 24, 4354-4365.	0.2	71
209	Analytic expressions for the inelastic scattering and energy loss of electron and proton beams in carbon nanotubes. Journal of Applied Physics, 2010, 108, .	1.1	14
210	The alluring potential of functionalized carbon nanotubes in drug discovery. Expert Opinion on Drug Discovery, 2010, 5, 691-707.	2.5	53
211	Nanorobots for medicine: how close are we?. Nanomedicine, 2010, 5, 341-342.	1.7	21
212	Efficient receptor-independent intracellular translocation of aptamers mediated by conjugation to carbon nanotubes. Chemical Communications, 2010, 46, 7379.	2.2	41
213	Designer adenoviruses for nanomedicine and nanodiagnostics. Trends in Biotechnology, 2009, 27, 220-229.	4.9	83
214	Antitumor Activity and Prolonged Survival by Carbonâ€Nanotubeâ€Mediated Therapeutic siRNA Silencing in a Human Lung Xenograft Model. Small, 2009, 5, 1176-1185.	5.2	153
215	Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nature Nanotechnology, 2009, 4, 627-633.	15.6	738
216	Tumor Targeting of Functionalized Quantum Dotâ^'Liposome Hybrids by Intravenous Administration. Molecular Pharmaceutics, 2009, 6, 520-530.	2.3	111

#	Article	IF	CITATIONS
217	Synthesis and Characterization of a Carbon Nanotubeâ^'Dendron Series for Efficient siRNA Delivery. Journal of the American Chemical Society, 2009, 131, 9843-9848.	6.6	168
218	Electron inelastic mean free paths for carbon nanotubes from optical data. Applied Physics Letters, 2009, 94, 263113.	1.5	14
219	Blood Circulation and Tissue Biodistribution of Lipidâ^'Quantum Dot (L-QD) Hybrid Vesicles Intravenously Administered in Mice. Bioconjugate Chemistry, 2009, 20, 1696-1702.	1.8	55
220	Synthesis and Analysis of Novel Glycerolipids for the Treatment of Metabolic Syndrome. Journal of Medicinal Chemistry, 2009, 52, 1172-1179.	2.9	10
221	Engineering Cationic Liposome. Methods in Enzymology, 2009, 464, 343-354.	0.4	36
222	Nanomedicine: transcending from embryonic to adolescent. Nanomedicine, 2009, 4, 123-124.	1.7	1
223	Functionalizedâ€Quantumâ€Đot–Liposome Hybrids as Multimodal Nanoparticles for Cancer. Small, 2008, 4, 1406-1415.	5.2	178
224	Carbonâ€Nanotube Shape and Individualization Critical for Renal Excretion. Small, 2008, 4, 1130-1132.	5.2	172
225	Dynamic Imaging of Functionalized Multiâ€Walled Carbon Nanotube Systemic Circulation and Urinary Excretion. Advanced Materials, 2008, 20, 225-230.	11.1	196
226	Interfacing Functionalized Carbon Nanohorns with Primary Phagocytic Cells. Advanced Materials, 2008, 20, 2421-2426.	11.1	48
227	Aryl-derivatized, water-soluble functionalized carbon nanotubes for biomedical applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 152, 8-11.	1.7	16
228	Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine, 2008, 3, 149-161.	1.7	149
229	Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opinion on Drug Delivery, 2008, 5, 331-342.	2.4	147
230	Hype around nanotubes creates unrealistic hopes. Nature, 2008, 453, 280-280.	13.7	9
231	The long and short of carbon nanotube toxicity. Nature Biotechnology, 2008, 26, 774-776.	9.4	399
232	Functionalized Carbon Nanotubes in Drug Design and Discovery. Accounts of Chemical Research, 2008, 41, 60-68.	7.6	994
233	Biomedical Applications of Functionalised Carbon Nanotubes. Carbon Materials, 2008, , 23-50.	0.2	23
234	Lipidâ^'Quantum Dot Bilayer Vesicles Enhance Tumor Cell Uptake and Retention <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2008, 2, 408-418.	7.3	141

#	Article	IF	CITATIONS
235	Subcellular S-factors for low-energy electrons: A comparison of Monte Carlo simulations and continuous-slowing-down calculations. International Journal of Radiation Biology, 2008, 84, 1034-1044.	1.0	29
236	Carbon nanotube cell translocation and delivery of nucleic acidsin vitro and in vivo. Journal of Materials Chemistry, 2008, 18, 17-22.	6.7	71
237	Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chemical Communications, 2008, , 459-461.	2.2	327
238	Nanoengineering Artificial Lipid Envelopes Around Adenovirus by Self-Assembly. ACS Nano, 2008, 2, 1040-1050.	7.3	53
239	Nano-physiology: Carbon nanotube cell biology: not just a simple interaction. European Journal of Nanomedicine, 2008, 1, .	0.6	1
240	Artificial envelopment of nonenveloped viruses: enhancing adenovirus tumor targeting <i>in vivo</i> . FASEB Journal, 2008, 22, 3389-3402.	0.2	45
241	Single-Cell Dosimetry for Radioimmunotherapy of B-Cell Lymphoma Patients with Special Reference to Leukemic Spread. Cancer Biotherapy and Radiopharmaceuticals, 2007, 22, 357-366.	0.7	18
242	The Rick Smalley Carbon Nanotube Symposium in San Francisco. Nanomedicine, 2007, 2, 133-133.	1.7	0
243	Liposome–nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomedicine, 2007, 2, 85-98.	1.7	154
244	Multifunctionalised cationic fullerene adducts for gene transfer: design, synthesis and DNA complexation. Chemical Communications, 2007, , 3762.	2.2	51
245	Intracellular Trafficking of Carbon Nanotubes by Confocal Laser Scanning Microscopy. Advanced Materials, 2007, 19, 1480-1484.	11.1	70
246	A Monte Carlo study of energy deposition at the sub-cellular level for application to targeted radionuclide therapy with low-energy electron emitters. Nuclear Instruments & Methods in Physics Research B, 2007, 256, 547-553.	0.6	22
247	Construction of nanoscale multicompartment liposomes for combinatory drug delivery. International Journal of Pharmaceutics, 2007, 331, 182-185.	2.6	42
248	Cell-penetrating CNTs for delivery of therapeutics. Nano Today, 2007, 2, 38-43.	6.2	238
249	Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nature Nanotechnology, 2007, 2, 108-113.	15.6	1,035
250	Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3357-3362.	3.3	995
251	The emergence of nanomedicine: a field in the making. Nanomedicine, 2006, 1, 1-3.	1.7	37
252	Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 404-412.	1.4	477

#	Article	IF	CITATIONS
253	Double functionalisation of carbon nanotubes for multimodal drug delivery. Chemical Communications, 2006, , 1182.	2.2	374
254	European nanomedicine research, training and regulation consolidates. Nanomedicine, 2006, 1, 491-492.	1.7	0
255	A study on the electronic stopping of protons in soft biological matter. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 55-60.	0.6	14
256	Carbon nanotubes as nanomedicines: From toxicology to pharmacologyâ~†. Advanced Drug Delivery Reviews, 2006, 58, 1460-1470.	6.6	749
257	Synthetic, Self-Assembly ABCD Nanoparticles; a Structural Paradigm for Viable Synthetic Non-Viral Vectors. ChemInform, 2006, 37, no.	0.1	1
258	Luminescence of Functionalized Carbon Nanotubes as a Tool to Monitor Bundle Formation and Dissociation in Water: The Effect of Plasmid-DNA Complexation. Advanced Functional Materials, 2006, 16, 1839-1846.	7.8	55
259	Establishing nanomedicine. Nanomedicine, 2006, 1, 259-260.	1.7	3
260	A Monte-Carlo code for the detailed simulation of electron and light-ion tracks in condensed matter. Radiation Protection Dosimetry, 2006, 119, 491-496.	0.4	9
261	Functionalized Carbon Nanotubes: Towards the Delivery of Therapeutic Molecules. Journal of Biomedical Nanotechnology, 2005, 1, 133-142.	0.5	38
262	A Monte-Carlo study of sub-keV electron transport in water: the influence of the condensed phase. Nuclear Instruments & Methods in Physics Research B, 2005, 228, 341-348.	0.6	11
263	Applications of carbon nanotubes in drug delivery. Current Opinion in Chemical Biology, 2005, 9, 674-679.	2.8	1,705
264	Binding and Condensation of Plasmid DNA onto Functionalized Carbon Nanotubes:Â Toward the Construction of Nanotube-Based Gene Delivery Vectors. Journal of the American Chemical Society, 2005, 127, 4388-4396.	6.6	726
265	Synthesis and Application of Integrin Targeting Lipopeptides in Targeted Gene Delivery. ChemBioChem, 2005, 6, 1212-1223.	1.3	25
266	Engineering Lipid Vesicles of Enhanced Intratumoral Transport Capabilities: Correlating Liposome Characteristics with Penetration into Human Prostate Tumor Spheroids. Journal of Liposome Research, 2005, 15, 15-27.	1.5	1
267	Surface modification of adenovirus by zwitterionic (DMPC:Chol) liposomes can up- or down-regulate adenoviral gene transfer efficiency in vitro. Journal of Drug Delivery Science and Technology, 2005, 15, 289-294.	1.4	2
268	Carbon Nanotubes: On the Road to Deliver. Current Drug Delivery, 2005, 2, 253-259.	0.8	53
269	Biomedical applications of functionalised carbon nanotubes. Chemical Communications, 2005, , 571.	2.2	953
270	Internal Microdosimetry for Single Cells in Radioimmunotherapy of B-Cell Lymphoma. Cancer Biotherapy and Radiopharmaceuticals, 2005, 20, 224-230.	0.7	18

#	Article	IF	CITATIONS
271	Engineering Lipid Vesicles of Enhanced Intratumoral Transport Capabilities: Correlating Liposome Characteristics with Penetration into Human Prostate Tumor Spheroids. Journal of Liposome Research, 2005, 15, 15-27.	1.5	44
272	Light-sensitive fusion between polymer-coated liposomes following physical anchoring of polymerisable polymers onto lipid bilayers by self-assembly. Faraday Discussions, 2005, 128, 379.	1.6	14
273	What Role Can Chemistry Play in Cationic Liposomeâ€Based Gene Therapy Research Today?. Advances in Genetics, 2005, 53PA, 69-118.	0.8	9
274	Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors. Chemical Society Reviews, 2005, 34, 970.	18.7	171
275	Liposome-mediated radiotherapeutics within avascular tumor spheroids: comparative dosimetry study for various radionuclides, liposome systems, and a targeting antibody. Journal of Nuclear Medicine, 2005, 46, 89-97.	2.8	34
276	What role can chemistry play in cationic liposome-based gene therapy research today?. Advances in Genetics, 2005, 53, 71-118.	0.8	4
277	Functionalized Carbon Nanotubes for Plasmid DNA Gene Delivery. Angewandte Chemie - International Edition, 2004, 43, 5242-5246.	7.2	977
278	Binding and interstitial penetration of liposomes within avascular tumor spheroids. International Journal of Cancer, 2004, 112, 713-721.	2.3	110
279	Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science. Advances in Colloid and Interface Science, 2003, 106, 147-168.	7.0	109
280	An analytic dosimetry study for the use of radionuclide-liposome conjugates in internal radiotherapy. Journal of Nuclear Medicine, 2001, 42, 499-504.	2.8	43
281	Double-blind clinical study reveals synergistic action between alpha-hydroxy acid and betamethasone lotions towards topical treatment of scalp psoriasis. Journal of the European Academy of Dermatology and Venereology, 2000, 14, 5-9.	1.3	14
282	Free Cholesterol Enhances Adenoviral Vector Gene Transfer and Expression in CAR-Deficient Cells. Molecular Therapy, 2000, 1, 39-48.	3.7	38
283	A Monte Carlo track structure code for electrons (~10 eV-10 keV) and protons (~0.3-10 MeV) in water: partitioning of energy and collision events. Physics in Medicine and Biology, 2000, 45, 3171-3194.	1.6	71
284	Tissue dosimetry of liposome-radionuclide complexes for internal radiotherapy: toward liposome-targeted therapeutic radiopharmaceuticals. Anticancer Research, 2000, 20, 3339-45.	0.5	33
285	Liposome-Mediated Delivery of Radionuclides to Tumor Models for Cancer Radiotherapy: A Quantitative Analysis. Journal of Liposome Research, 1999, 9, 407-424.	1.5	11
286	Liposomes as Carriers of Radionuclides: From Imaging to Therapy. Journal of Liposome Research, 1999, 9, 429-460.	1.5	18
287	Physical Conjugation of (Tri-) Block Copolymers to Liposomes toward the Construction of Sterically Stabilized Vesicle Systems. Langmuir, 1999, 15, 369-376.	1.6	116
288	Molecular structure and conformation in phospholipid vesicles sterically stabilized by (tri)-block copolymers investigated by multi-nuclear magnetic resonance techniques. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 136, 1-9.	2.3	24

#	Article	IF	CITATIONS
289	Steric stabilization of phospholipid vesicles by block copolymers Vesicle flocculation and osmotic swelling caused by monovalent and divalent cations. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2159-2168.	1.7	36
290	Engineering Stealthâ,,¢ Liposome Surfaces: Exercises in Colloid Chemistry Principles. , 1998, , 139-145.		0
291	Preparation of Narrow Size Distribution Silica Particles Using Microemulsions. Langmuir, 1997, 13, 6400-6406.	1.6	54
292	Addition of (Tri-)Block Copolymers to Phospholipid Vesicles: A Study of the Molecular Morphology and Structure by Using Hydrophobic Dye Molecules as Bilayer Probes. Journal of Colloid and Interface Science, 1997, 191, 341-348.	5.0	33
293	The effect of monovalent and divalent cations on sterically stabilized phospholipid vesicles (liposomes). , 1996, , 206-211.		3
294	Effect of the addition of block copolymers on the formation and stability of vesicles (liposomes) prepared using soybean lecithin. , 1995, , 69-74.		8
295	Addition of Block Copolymers to Liposomes Prepared Using Soybean Lecithin. Effects on Formation, Stability and the Specific Localization of the Incorporated Surfactants Investigated. Journal of Liposome Research, 1995, 5, 117-130.	1.5	27
296	The use of Hydrophobic Dye Molecules in Monitoring the Liposome Bilayer Microenvironment and Locating Block Copolymers Added to Enhance Liposome Steric Stability. Journal of Liposome Research, 1995, 5, 443-452.	1.5	5
297	Converging Mechanisms of Epileptogenesis and Their Insight in Glioblastoma. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	9