Tomas Gonzalez-Hernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3460160/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prolonged dopamine D3 receptor stimulation promotes dopamine transporter ubiquitination and degradation through a PKC-dependent mechanism. Pharmacological Research, 2021, 165, 105434.	7.1	13
2	Random Lasing Detection of Mutant Huntingtin Expression in Cells. Sensors, 2021, 21, 3825.	3.8	7
3	Novel random laser-based probe of Huntington disease in cell cultures. , 2021, , .		0
4	DRD3 (dopamine receptor D3) but not DRD2 activates autophagy through MTORC1 inhibition preserving protein synthesis. Autophagy, 2020, 16, 1279-1295.	9.1	22
5	Random lasing in brain tissues. Organic Electronics, 2019, 75, 105389.	2.6	30
6	Pramipexole reduces soluble mutant huntingtin and protects striatal neurons through dopamine D3 receptors in a genetic model of Huntington's disease. Experimental Neurology, 2018, 299, 137-147.	4.1	14
7	A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16027.	4.1	32
8	Long-term controlled GDNF over-expression reduces dopamine transporter activity without affecting tyrosine hydroxylase expression in the rat mesostriatal system. Neurobiology of Disease, 2016, 88, 44-54.	4.4	20
9	Prolonged treatment with pramipexole promotes physical interaction of striatal dopamine D3 autoreceptors with dopamine transporters to reduce dopamine uptake. Neurobiology of Disease, 2015, 74, 325-335.	4.4	43
10	Striatal vessels receive phosphorylated tyrosine hydroxylase-rich innervation from midbrain dopaminergic neurons. Frontiers in Neuroanatomy, 2014, 8, 84.	1.7	20
11	The Neuronal Serum- and Glucocorticoid-Regulated Kinase 1.1 Reduces Neuronal Excitability and Protects against Seizures through Upregulation of the M-Current. Journal of Neuroscience, 2013, 33, 2684-2696.	3.6	21
12	Melatonin prevents dopaminergic cell loss induced by lentiviral vectors expressing A30P mutant alpha-synuclein. Histology and Histopathology, 2013, 28, 999-1006.	0.7	18
13	Differential N termini in epithelial Na ⁺ channel δ-subunit isoforms modulate channel trafficking to the membrane. American Journal of Physiology - Cell Physiology, 2012, 302, C868-C879.	4.6	20
14	Neonatal Apneic Seizure of Occipital Lobe Origin: Continuous Video-EEG Recording. Pediatrics, 2012, 129, e1616-e1620.	2.1	15
15	The dopamine transporter is differentially regulated after dopaminergic lesion. Neurobiology of Disease, 2010, 40, 518-530.	4.4	28
16	Vulnerability of mesostriatal dopaminergic neurons in Parkinson's disease. Frontiers in Neuroanatomy, 2010, 4, 140.	1.7	55
17	The neuronal-specific SGK1.1 kinase regulates δ-epithelial Na ⁺ channel independently of PY motifs and couples it to phospholipase C signaling. American Journal of Physiology - Cell Physiology, 2010, 299, C779-C790.	4.6	38
18	Dopamine transporter glycosylation correlates with the vulnerability of midbrain dopaminergic cells in Parkinson's disease. Neurobiology of Disease, 2009, 36, 494-508.	4.4	57

#	Article	IF	CITATIONS
19	Aging effects on the dopamine transporter expression and compensatory mechanisms. Neurobiology of Aging, 2009, 30, 973-986.	3.1	48
20	Phenotype, Compartmental Organization and Differential Vulnerability of Nigral Dopaminergic Neurons. , 2009, , 21-37.		4
21	Osmosensitive response of glutamate in the substantia nigra. Experimental Neurology, 2009, 220, 335-340.	4.1	5
22	Deglycosylation and subcellular redistribution of VMAT2 in the mesostriatal system during normal aging. Neurobiology of Aging, 2008, 29, 1702-1711.	3.1	26
23	Substantia nigra osmoregulation: taurine and ATP involvement. American Journal of Physiology - Cell Physiology, 2007, 292, C1934-C1941.	4.6	28
24	Nigrostriatal cell firing action on the dopamine transporter. European Journal of Neuroscience, 2007, 25, 2755-2765.	2.6	4
25	Molecular and Cellular Events in Alcoholâ€Induced Muscle Disease. Alcoholism: Clinical and Experimental Research, 2007, 31, 1953-1962.	2.4	89
26	Cloning and functional expression of a new epithelial sodium channel ? subunit isoform differentially expressed in neurons of the human and monkey telencephalon. Journal of Neurochemistry, 2007, 102, 1304-1315.	3.9	48
27	Glycine release in the substantia nigra: Interaction with glutamate and GABA. Neuropharmacology, 2006, 50, 548-557.	4.1	33
28	Consequences of unilateral nigrostriatal denervation on the thalamostriatal pathway in rats. European Journal of Neuroscience, 2006, 23, 2099-2108.	2.6	75
29	Tetrahydrobiopterin stimulates l-DOPA release from striatal tissue. European Journal of Pharmacology, 2006, 541, 33-37.	3.5	3
30	Interleukin-6 and Nitric Oxide Synthase Expression in the Vasopressin and Corticotrophin-releasing Factor Systems of the Rat Hypothalamus. Journal of Histochemistry and Cytochemistry, 2006, 54, 427-441.	2.5	31
31	Heterogeneous Dopamine Neurochemistry in the Striatum: The Fountain-Drain Matrix. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 31-43.	2.5	17
32	Striatal expression of GDNF and differential vulnerability of midbrain dopaminergic cells. European Journal of Neuroscience, 2005, 21, 1815-1827.	2.6	74
33	Alcoholic myopathy: Lack of effect of zinc supplementation. Food and Chemical Toxicology, 2005, 43, 1333-1343.	3.6	15
34	Estrogen modulation of adrenoceptor responsiveness in the female rat pineal gland: differential expression of intracellular estrogen receptors. Journal of Pineal Research, 2004, 37, 26-35.	7.4	13
35	Expression of dopamine and vesicular monoamine transporters and differential vulnerability of mesostriatal dopaminergic neurons. Journal of Comparative Neurology, 2004, 479, 198-215.	1.6	84
36	Response of the GABAergic and dopaminergic mesostriatal projections to the lesion of the contralateral dopaminergic mesostriatal pathway in the rat. Movement Disorders, 2004, 19, 1029-1042.	3.9	17

#	Article	IF	CITATIONS
37	Effect of intracerebroventricular injection of lipopolysaccharide on the tuberoinfundibular dopaminergic system of the rat. Neuroscience, 2004, 127, 251-259.	2.3	15
38	Effects of dopaminergic cell degeneration on electrophysiological characteristics and GAD65/GAD67 expression in the substantia nigra: Different action on GABA cell subpopulations. Movement Disorders, 2003, 18, 254-266.	3.9	17
39	Protein deficiency and muscle damage in carbon tetrachloride induced liver cirrhosis. Food and Chemical Toxicology, 2003, 41, 1789-1797.	3.6	11
40	Response of GABAergic cells in the deep mesencephalic nucleus to dopaminergic cell degeneration: an electrophysiological and in situ hybridization study. Neuroscience, 2002, 113, 311-321.	2.3	14
41	Dopamine Cell Degeneration Induced by Intraventricular Administration of 6-Hydroxydopamine in the Rat: Similarities with Cell Loss in Parkinson's Disease. Experimental Neurology, 2001, 169, 163-181.	4.1	102
42	Motor behavioural changes after intracerebroventricular injection of 6-hydroxydopamine in the rat: an animal model of Parkinson's disease. Behavioural Brain Research, 2001, 122, 79-92.	2.2	74
43	The deep mesencephalic nucleus as an output center of basal ganglia: Morphological and electrophysiological similarities with the substantia nigra. Journal of Comparative Neurology, 2001, 438, 12-31.	1.6	28
44	Colocalization of tyrosine hydroxylase and GAD65 mRNA in mesostriatal neurons. European Journal of Neuroscience, 2001, 13, 57-67.	2.6	24
45	Colocalization of tyrosine hydroxylase and GAD65 mRNA in mesostriatal neurons. European Journal of Neuroscience, 2001, 13, 57-67.	2.6	25
46	Compartmental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat. Journal of Comparative Neurology, 2000, 421, 107-135.	1.6	167
47	Gender Differences and the Effect of Different Endocrine Situations on the NOS Expression Pattern in the Anterior Pituitary Gland. Journal of Histochemistry and Cytochemistry, 2000, 48, 1639-1647.	2.5	10
48	Compartmental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat. Journal of Comparative Neurology, 2000, 421, 107-135.	1.6	69
49	Nitric Oxide Synthase Expression in the Cerebral Cortex of Patients with Epilepsy. Epilepsia, 2000, 41, 1259-1268.	5.1	30
50	Electrophysiological and Morphological Evidence for a GABAergic Nigrostriatal Pathway. Journal of Neuroscience, 1999, 19, 4682-4694.	3.6	69
51	Expression of three forms of nitric oxide synthase in peripheral nerve regeneration. Journal of Neuroscience Research, 1999, 55, 198-207.	2.9	60
52	Nitric oxide synthase and growth-associated protein are coexpressed in primary sensory neurons after peripheral injury. Journal of Comparative Neurology, 1999, 404, 64-74.	1.6	39
53	Effects of ethylcholine mustard azirinium ion (AF64A) on the choline acetyltransferase and nitric oxide synthase activities in mesopontine cholinergic neurons of the rat. Neuroscience, 1997, 82, 853-866.	2.3	6
54	NOS Expression in Nigral Cells after Excitotoxic and Non-excitotoxic Lesion of the Pedunculopontine Tegmental Nucleus. European Journal of Neuroscience, 1997, 9, 2658-2667.	2.6	19

#	Article	lF	CITATIONS
55	Sources of GABAergic input to the inferior colliculus of the rat. , 1996, 372, 309-326.		169
56	Histochemical and immunohistochemical detection of neurons that produce nitric oxide: effect of different fixative parameters and immunoreactivity against non-neuronal NOS antisera Journal of Histochemistry and Cytochemistry, 1996, 44, 1399-1413.	2.5	51
57	Pyramidal and nonpyramidal callosal cells in the striate cortex of the adult rat. Journal of Comparative Neurology, 1994, 350, 439-451.	1.6	25
58	NADPH-d (dihydronicotinamide adenine dinucleotide phosphate diaphorase) activity in geniculo-tectal neurons of the rat. Neuroscience Letters, 1994, 167, 77-80.	2.1	6
59	Transient NADPH-diaphorase activity in motor nuclei of the foetal human brain stem. NeuroReport, 1994, 5, 758-760.	1.2	27
60	NADPH-d activity in the islands of Calleja: a regulatory system of blood flow to the ventral striatum/pallidum?. NeuroReport, 1994, 5, 1281-1284.	1.2	22
61	Developmental changes in layer I of the human neocortex during prenatal life: A Dilâ€tracing and AChE and NADPHâ€d histochemistry study. Journal of Comparative Neurology, 1993, 338, 317-336.	1.6	89
62	Postnatal development of NADPH-diaphorase activity in the superior colliculus and the ventral lateral geniculate nucleus of the rat. Developmental Brain Research, 1993, 76, 141-145.	1.7	39
63	Relative and combined roles of ethanol and protein malnutrition on muscle zinc, potassium, copper, iron, and magnesium. Alcohol and Alcoholism, 1993, 28, 311-8.	1.6	11
64	Pathogenesis of alcoholic myopathy: roles of ethanol and malnutrition. Drug and Alcohol Dependence, 1992, 30, 101-110.	3.2	10
65	Laminar distribution and morphology of NADPH-diaphorase containing neurons in the superior colliculus and underlying periaqueductal gray of the rat. Anatomy and Embryology, 1992, 186, 245-50.	1.5	41
66	Relative and combined roles of ethanol and protein malnutrition on skeletal muscle. Alcohol and Alcoholism, 1992, 27, 159-63.	1.6	19
67	Alcohol effects on the morphometric development of the subfornical organ and area postrema of the albino mouse. Alcohol, 1991, 8, 65-70.	1.7	3
68	The efferent projections of neurons in the white matter of different cortical areas of the adult rat. Anatomy and Embryology, 1991, 184, 99-102.	1.5	30
69	Aggregations of granule cells in the basal forebrain (islands of Calleja): Golgi and cytoarchitectonic study in different mammals, including man. Journal of Comparative Neurology, 1989, 284, 405-428.	1.6	85
70	Effect of propylthiouracil on liver cell development in the male albino mouse: protective effect against ethanol-induced alterations. Drug and Alcohol Dependence, 1988, 21, 11-18.	3.2	7
71	Development of the Subfornical Organ and Area postrema of the Male Albino Mouse.Karyometric Effect of Neonatal and Prepuberal Castration. Cells Tissues Organs, 1988, 131, 13-25.	2.3	2
72	Direct projections from the reticular formation of the medulla oblongata to the anterior cingulate cortex in the mouse and the rat. Brain Research, 1986, 398, 207-211.	2.2	10

#	Article	IF	CITATIONS
73	Effects of hypothyroidism on the karyometric development of the paraventricular and ventromedial nuclei of the hypothalamus in the mouse. Brain Research, 1986, 374, 93-100.	2.2	4