Angela H Depace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/346006/publications.pdf Version: 2024-02-01

ANCELA H DEDACE

#	Article	IF	CITATIONS
1	A Quantitative Spatiotemporal Atlas of Gene Expression in the Drosophila Blastoderm. Cell, 2008, 133, 364-374.	28.9	263
2	Information Integration and Energy Expenditure in Gene Regulation. Cell, 2016, 166, 234-244.	28.9	127
3	Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution I: data acquisition pipeline. Genome Biology, 2006, 7, R123.	9.6	121
4	Depleting Gene Activities in Early <i>Drosophila</i> Embryos with the "Maternal-Gal4–shRNA―System. Genetics, 2013, 193, 51-61.	2.9	98
5	Combinatorial Gene Regulation through Kinetic Control of the Transcription Cycle. Cell Systems, 2017, 4, 97-108.e9.	6.2	63
6	Krüppel Expression Levels Are Maintained through Compensatory Evolution of Shadow Enhancers. Cell Reports, 2015, 12, 1740-1747.	6.4	55
7	A Conserved Developmental Patterning Network Produces Quantitatively Different Output in Multiple Species of Drosophila. PLoS Genetics, 2011, 7, e1002346.	3.5	51
8	Dissecting the sharp response of a canonical developmental enhancer reveals multiple sources of cooperativity. ELife, 2019, 8, .	6.0	47
9	Cellular resolution models for even skipped regulation in the entire Drosophila embryo. ELife, 2013, 2, e00522.	6.0	45
10	Shadow enhancers enable Hunchback bifunctionality in the <i>Drosophila</i> embryo. Proceedings of the United States of America, 2015, 112, 785-790.	7.1	44
11	The appeasement of Doug: a synthetic approach to enhancer biology. Integrative Biology (United) Tj ETQq1 10.	784314 rg	gBT ₄ /Overloci
12	Transcriptional precision and accuracy in development: from measurements to models and mechanisms. Development (Cambridge), 2017, 144, 3855-3866.	2.5	34
13	Signal Integration by Shadow Enhancers and Enhancer Duplications Varies across the Drosophila Embryo. Cell Reports, 2019, 26, 2407-2418.e5.	6.4	34
14	A gene expression atlas of a <i>bicoid</i> -depleted <i>Drosophila</i> embryo reveals early canalization of cell fate. Development (Cambridge), 2015, 142, 587-596.	2.5	31
15	Modeling transcriptional networks in Drosophila development at multiple scales. Current Opinion in Genetics and Development, 2011, 21, 711-718.	3.3	28
16	Dissecting sources of quantitative gene expression pattern divergence between <i>Drosophila</i> species. Molecular Systems Biology, 2012, 8, 604.	7.2	27
17	Hunchback is counter-repressed to regulate even-skipped stripe 2 expression in Drosophila embryos. PLoS Genetics, 2018, 14, e1007644.	3.5	25
18	Yearly Planning Meetings: Individualized Development Plans Aren't Just More Paperwork. Molecular Cell, 2015, 58, 718-721.	9.7	21

ANGELA H DEPACE

#	Article	IF	CITATIONS
19	Comparing mRNA levels using in situ hybridization of a target gene and co-stain. Methods, 2014, 68, 233-241.	3.8	16
20	SiteOut: An Online Tool to Design Binding Site-Free DNA Sequences. PLoS ONE, 2016, 11, e0151740.	2.5	15
21	Analysis of Genetic Variation Indicates DNA Shape Involvement in Purifying Selection. Molecular Biology and Evolution, 2018, 35, 1958-1967.	8.9	14
22	A Mutation in the <i>Drosophila melanogaster eve</i> Stripe 2 Minimal Enhancer Is Buffered by Flanking Sequences. G3: Genes, Genomes, Genetics, 2020, 10, 4473-4482.	1.8	13
23	Quantitative Measurement and Thermodynamic Modeling of Fused Enhancers Support a Two-Tiered Mechanism for Interpreting Regulatory DNA. Cell Reports, 2017, 21, 236-245.	6.4	11
24	Quantitative Comparison of the Anterior-Posterior Patterning System in the Embryos of Five <i>Drosophila</i> Species. G3: Genes, Genomes, Genetics, 2019, 9, 2171-2182.	1.8	9
25	Defining Kinetic Roles of Transcriptional Activators in the Early Drosophila Embryo. SSRN Electronic Journal, 0, , .	0.4	0