Yu-Feng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3458620/publications.pdf

Version: 2024-02-01

71685 61984 6,729 164 43 76 citations h-index g-index papers 167 167 167 5646 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Bioavailability and methylation of bulk mercury sulfide in paddy soils: New insights into mercury risks in rice paddies. Journal of Hazardous Materials, 2022, 424, 127394.	12.4	9
2	Detection and remediation of mercury contaminated environment by nanotechnology: Progress and challenges. Environmental Pollution, 2022, 293, 118557.	7.5	17
3	Multiplex metal-detection based assay (MMDA) for COVID-19 diagnosis and identification of disease severity biomarkers. Chemical Science, 2022 13, 3216-3226 point Determination of Reactor Antipology of the control of	7.4	5
4	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">U</mml:mi></mml:mrow><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mmultiscripts></mml:mrow> <td>7.8</td> <td>12</td>	7.8	12
5	and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mm 181.<="" 2022,="" 8,="" and="" background="" detection="" diffuse="" experiments="" for="" juno.="" neutrino="" of="" prospects="" sk-gd="" supernova="" td="" the="" universe,="" with=""><td>2.5</td><td>7</td></mm></mml:mrow></mml:math>	2.5	7
6	Reactor antineutrino anomaly in light of recent flux model refinements. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 829, 137054.	4.1	41
7	Constraining light mediators via detection of coherent elastic solar neutrino nucleus scattering. Nuclear Physics B, 2022, 977, 115737.	2.5	5
8	Model-independent determination of isotopic cross sections per fission for reactor antineutrinos. Physical Review D, 2022, 105, .	4.7	1
9	Roles of plant-associated microorganisms in regulating the fate of Hg in croplands: A perspective on potential pathways in maintaining sustainable agriculture. Science of the Total Environment, 2022, 834, 155204.	8.0	11
10	Non-targeted metallomics through synchrotron radiation X-ray fluorescence with machine learning for cancer screening using blood samples. Talanta, 2022, 245, 123486.	5.5	6
11	Size characterization of nanomaterials in environmental and biological matrices through non-electron microscopic techniques. Science of the Total Environment, 2022, 835, 155399.	8.0	3
12	Probing light mediators and (g \hat{a}^2 2) \hat{l}^4 through detection of coherent elastic neutrino nucleus scattering at COHERENT. Journal of High Energy Physics, 2022, 2022, .	4.7	20
13	Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment. Journal of High Energy Physics, 2022, 2022, .	4.7	3
14	Using nano-selenium to combat Coronavirus Disease 2019 (COVID-19)?. Nano Today, 2021, 36, 101037.	11.9	57
15	Temporal trends of urinary mercury in Chinese people from 1970s to 2010s: A review. Ecotoxicology and Environmental Safety, 2021, 208, 111460.	6.0	9
16	Using nanoselenium to combat Minamata disease in rats: the regulation of gut microbes. Environmental Science: Nano, 2021, 8, 1437-1445.	4.3	2
17	Ab initio calculations of reactor antineutrino fluxes with exact lepton wave functions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 813, 136067.	4.1	3
18	Comparative nanometallomics as a new tool for nanosafety evaluation. Metallomics, 2021, 13, .	2.4	8

#	Article	IF	CITATIONS
19	Calibration strategy of the JUNO experiment. Journal of High Energy Physics, 2021, 2021, 1.	4.7	39
20	Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. I. Model predictions. Physical Review D, 2021, 103, .	4.7	11
21	Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. II. Methodology for <i>inÂsitu</i> measurements. Physical Review D, 2021, 103, .	4.7	8
22	Towards screening the neurotoxicity of chemicals through feces after exposure to methylmercury or inorganic mercury in rats: A combined study using gut microbiome, metabolomics and metallomics. Journal of Hazardous Materials, 2021, 409, 124923.	12.4	30
23	Neutrino-4 anomaly: Oscillations or fluctuations?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 816, 136214.	4.1	27
24	NEUTRINO CHARGE RADII FROM COHERENT ELASTIC NEUTRINO-NUCLEUS SCATTERING., 2021, , .		1
25	Pollution characteristics and ecological risks associated with heavy metals in the Fuyang river system in North China. Environmental Pollution, 2021, 281, 116994.	7.5	31
26	Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. Environment International, 2021, 156, 106749.	10.0	116
27	Understanding the hepatoxicity of inorganic mercury through guts: Perturbance to gut microbiota, alteration of gut-liver axis related metabolites and damage to gut integrity. Ecotoxicology and Environmental Safety, 2021, 225, 112791.	6.0	14
28	Feasibility and physics potential of detecting ⁸ B solar neutrinos at JUNO *. Chinese Physics C, 2021, 45, 023004.	3.7	26
29	Constraints on light vector mediators through coherent elastic neutrino nucleus scattering data from COHERENT. Journal of High Energy Physics, 2021, 2021, 1.	4.7	43
30	JUNO sensitivity to low energy atmospheric neutrino spectra. European Physical Journal C, 2021, 81, 1.	3.9	11
31	MALDI–TOF-MS and XAS analysis of complexes formed by metallothionein with mercury and/or selenium. BioMetals, 2021, 34, 1353-1363.	4.1	3
32	The design and sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS. European Physical Journal C, 2021, 81, 1.	3.9	15
33	Radioactivity control strategy for the JUNO detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	13
34	New insights into nuclear physics and weak mixing angle using electroweak probes. Physical Review C, 2021, 104, .	2.9	17
35	Autoionization in the evolution process of dense Rb Rydberg atoms in <i>n</i> P states. X-Ray Spectrometry, 2020, 49, 125-128.	1.4	2
36	Comparative study of the effects of different chelating ligands on the absorption and transport of mercury in maize (Zea mays L.). Ecotoxicology and Environmental Safety, 2020, 188, 109897.	6.0	5

#	Article	IF	Citations
37	Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats. Ecotoxicology and Environmental Safety, 2020, 190, 110130.	6.0	51
38	JULOC: A local 3-D high-resolution crustal model in South China for forecasting geoneutrino measurements at JUNO. Physics of the Earth and Planetary Interiors, 2020, 299, 106409.	1.9	9
39	A comparative study on the accumulation, translocation and transformation of selenite, selenate, and SeNPs in a hydroponic-plant system. Ecotoxicology and Environmental Safety, 2020, 189, 109955.	6.0	70
40	Neutrino, electroweak, and nuclear physics from COHERENT elastic neutrino-nucleus scattering with refined quenching factor. Physical Review D, 2020, 101, .	4.7	31
41	Improved Constraints on Sterile Neutrino Mixing from Disappearance Searches in the MINOS, <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>MINOS</mml:mi><mml:mo>+</mml:mo></mml:mrow></mml:math> . Dava Bay, and Bugey-3 Experiments, Physical Review Letters, 2020, 125, 071801.	7.8	40
42	Physics results from the first COHERENT observation of coherent elastic neutrino-nucleus scattering in argon and their combination with cesium-iodide data. Physical Review D, 2020, 102, .	4.7	36
43	Silica nanoparticles alleviate mercury toxicity <i>via</i> immobilization and inactivation of Hg(<scp>ii</scp>) in soybean (<i>Glycine max</i>). Environmental Science: Nano, 2020, 7, 1807-1817.	4.3	48
44	Towards the meV limit of the effective neutrino mass in neutrinoless double-beta decays *. Chinese Physics C, 2020, 44, 031001.	3.7	20
45	Immobilization of mercury by nano-elemental selenium and the underlying mechanisms in hydroponic-cultured garlic plant. Environmental Science: Nano, 2020, 7, 1115-1125.	4.3	28
46	Electromagnetic interactions of massive neutrinos and neutrino oscillations. Journal of Physics: Conference Series, 2020, 1342, 012118.	0.4	1
47	KATRIN bound on $3\!+\!1$ active-sterile neutrino mixing and the reactor antineutrino anomaly. Journal of High Energy Physics, 2020, 2020, 1.	4.7	16
48	Prospects for pre-supernova neutrino observation in future large liquid-scintillator detectors. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 049-049.	5.4	6
49	The Reactor Neutrino Energy Spectrum Measurement with a High Pressure Gas TPC Detector. , 2020, , .		0
50	Diagnosing the reactor antineutrino anomaly with global antineutrino flux data. Physical Review D, 2019, 99, .	4.7	31
51	Selenium decreases methylmercury and increases nutritional elements in rice growing in mercury-contaminated farmland. Ecotoxicology and Environmental Safety, 2019, 182, 109447.	6.0	28
52	Stability of Ligands on Nanoparticles Regulating the Integrity of Biological Membranes at the Nano–Lipid Interface. ACS Nano, 2019, 13, 8680-8693.	14.6	59
53	Improved measurement of the reactor antineutrino flux at Daya Bay. Physical Review D, 2019, 100, .	4.7	28
54	Model-independent approach to the reconstruction of multiflavor supernova neutrino energy spectra. Physical Review D, 2019, 99, .	4.7	18

#	Article	IF	Citations
55	Global status of light sterile neutrinos. Journal of Physics: Conference Series, 2019, 1216, 012017.	0.4	O
56	Selenium Nanoparticles as an Efficient Nanomedicine for the Therapy of Huntington's Disease. ACS Applied Materials & Disease. ACS	8.0	101
57	display="inline"> <mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">U</mml:mi></mml:mrow><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mrow></mml:mrow></mml:mmultiscripts></mml:mrow> <td>7.8</td> <td>47</td>	7.8	47
58	display="inline" > < mml:mrow> < mml:mmultiscripts> < mml:mrow> < mml:mrow> < mml:mpi Selenium modulated gut flora and promoted decomposition of methylmercury in methylmercury-poisoned rats. Ecotoxicology and Environmental Safety, 2019, 185, 109720.	escripts 6.0	33
59	Integration of spectral and textural features of visible and near-infrared hyperspectral imaging for differentiating between normal and white striping broiler breast meat. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 213, 118-126.	3.9	36
60	Botanic Metallomics of Mercury and Selenium: Current Understanding of Mercury-Selenium Antagonism in Plant with the Traditional and Advanced Technology. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 628-634.	2.7	17
61	Human Biological Monitoring of Mercury Through Hair Samples in China. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 701-707.	2.7	11
62	New realization of the conversion calculation for reactor antineutrino fluxes. Physical Review D, 2019, 100, .	4.7	11
63	Confronting tridirect <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:mrow></mml:math> -symmetry models with neutrino oscillation experiments. Physical Review D, 2019, 100, .	4.7	2
64	Non-negligible oscillation effects in the crustal geoneutrino calculations. Physical Review D, 2019, 100, .	4.7	3
65	Nanoelemental selenium alleviated the mercury load and promoted the formation of high-molecular-weight mercury- and selenium-containing proteins in serum samples from methylmercury-poisoned rats. Ecotoxicology and Environmental Safety, 2019, 169, 128-133.	6.0	10
66	Understanding Enhanced Microbial MeHg Production in Mining-Contaminated Paddy Soils under Sulfate Amendment: Changes in Hg Mobility or Microbial Methylators?. Environmental Science & Enchapsian Technology, 2019, 53, 1844-1852.	10.0	58
67	Intestinal Methylation and Demethylation of Mercury. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 597-604.	2.7	42
68	Average CsI Neutron Density Distribution from COHERENT Data. Physical Review Letters, 2018, 120, 072501.	7.8	84
69	Translocation and transformation of selenium in hyperaccumulator plant Cardamine enshiensis from Enshi, Hubei, China. Plant and Soil, 2018, 425, 577-588.	3.7	31
70	Selenoprotein P as the major transporter for mercury in serum from methylmercury-poisoned rats. Journal of Trace Elements in Medicine and Biology, 2018, 50, 589-595.	3.0	28
71	Towards a complete reconstruction of supernova neutrino spectra in future large liquid-scintillator detectors. Physical Review D, 2018, 97, .	4.7	21
72	Platinum, palladium, rhodium, molybdenum and strontium in blood of urban women in nine countries. International Journal of Hygiene and Environmental Health, 2018, 221, 223-230.	4.3	18

#	Article	IF	CITATIONS
73	Evidence for molecular antagonistic mechanism between mercury and selenium in rice (Oryza sativa) Tj ETQq1 Elements in Medicine and Biology, 2018, 50, 435-440.	0.784314 3.0	1 rgBT /Overl 20
74	Growth Identification of Aspergillus flavus and Aspergillus parasiticus by Visible/Near-Infrared Hyperspectral Imaging. Applied Sciences (Switzerland), 2018, 8, 513.	2.5	10
75	Neutrino charge radii from COHERENT elastic neutrino-nucleus scattering. Physical Review D, 2018, 98,	4.7	63
76	Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay. Physical Review Letters, 2018, 121, 241805.	7.8	168
77	Evaluation of Near-Infrared Hyperspectral Imaging for Detection of Peanut and Walnut Powders in Whole Wheat Flour. Applied Sciences (Switzerland), 2018, 8, 1076.	2.5	25
78	Visible and Near-Infrared Hyperspectral Imaging for Cooking Loss Classification of Fresh Broiler Breast Fillets. Applied Sciences (Switzerland), 2018, 8, 256.	2.5	5
79	Model-independent $\hat{l}^{1}\!/2\hat{A}^{-}$ e short-baseline oscillations from reactor spectral ratios. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 782, 13-21.	4.1	61
80	Indirect unitarity violation entangled with matter effects in reactor antineutrino oscillations. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 782, 578-588.	4.1	14
81	Using a Combination of Spectral and Textural Data to Measure Water-Holding Capacity in Fresh Chicken Breast Fillets. Applied Sciences (Switzerland), 2018, 8, 343.	2.5	7
82	Thiosulfate amendment reduces mercury accumulation in rice (Oryza sativa L.). Plant and Soil, 2018, 430, 413-422.	3.7	27
83	Proton acceleration from vacuum-gapped double-foil target with low-contrast picosecond intense laser. Physics of Plasmas, 2018, 25, 073108.	1.9	1
84	Advanced Nuclear and Related Techniques for Metallomics and Nanometallomics. Advances in Experimental Medicine and Biology, 2018, 1055, 213-243.	1.6	4
85	Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils. Chemosphere, 2017, 182, 293-300.	8.2	68
86	Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay. Chinese Physics C, 2017, 41, 013002.	3.7	96
87	Mass hierarchy sensitivity of medium baseline reactor neutrino experiments with multiple detectors. Nuclear Physics B, 2017, 918, 245-256.	2.5	7
88	Astrophysical probes of electromagnetic neutrinos. Journal of Physics: Conference Series, 2017, 888, 012223.	0.4	0
89	Updated global 3+1 analysis of short-baseline neutrino oscillations. Journal of High Energy Physics, 2017, 2017, 1.	4.7	171
90	Jiangmen Underground Neutrino Observatory: Status and Prospectives. , 2017, , 27-33.		0

#	Article	IF	CITATIONS
91	pâ^'n Junction Rectifying Characteristics of Purely n -Type GaN-Based Structures. Physical Review Applied, 2017, 8, .	3.8	4
92	Plasma optical shutter in ultraintense laser-foil interaction. Physics of Plasmas, 2017, 24, 113111.	1.9	12
93	Probing direct and indirect unitarity violation in future accelerator neutrino facilities. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 774, 217-224.	4.1	24
94	Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. Physical Review Letters, 2017, 118, 251801.	7.8	129
95	Reactor fuel fraction information on the antineutrino anomaly. Journal of High Energy Physics, 2017, 2017, 1.	4.7	38
96	Prospectives on Direct Detection of the Cosmic Neutrino Background. Journal of Physics: Conference Series, 2017, 888, 012146.	0.4	1
97	Selenium deficiency-induced alterations in ion profiles in chicken muscle. PLoS ONE, 2017, 12, e0184186.	2.5	8
98	Direct detection of relic active and sterile neutrinos. Journal of Physics: Conference Series, 2016, 718, 062038.	0.4	1
99	Neutrino physics with JUNO. Journal of Physics G: Nuclear and Particle Physics, 2016, 43, 030401.	3.6	750
100	Terrestrial matter effects on reactor antineutrino oscillations at JUNO or RENO-50: how small is small?. Chinese Physics C, 2016, 40, 091001.	3.7	31
101	Getting the most from the detection of Galactic supernova neutrinos in future large liquid-scintillator detectors. Physical Review D, 2016, 94, .	4.7	46
102	Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments. Physical Review Letters, 2016, 117, 151801.	7.8	71
103	Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment. Physical Review Letters, 2016, 117, 151802.	7.8	65
104	Mercury and selenium interactions in human blood in the Wanshan mercury mining area, China. Science of the Total Environment, 2016, 573, 376-381.	8.0	18
105	Elevated mercury bound to serum proteins in methylmercury poisoned rats after selenium treatment. BioMetals, 2016, 29, 893-903.	4.1	13
106	Neutrino oscillation probabilities in matter with direct and indirect unitarity violation in the lepton mixing matrix. Physical Review D, 2016, 93, .	4.7	17
107	Potential of geo-neutrino measurements at JUNO. Chinese Physics C, 2016, 40, 033003.	3.7	16
108	Looking into analytical approximations for three-flavor neutrino oscillation probabilities in matter. Journal of High Energy Physics, 2016, 2016, 1.	4.7	9

#	Article	IF	CITATIONS
109	Electromagnetic neutrinos in laboratory experiments and astrophysics. Annalen Der Physik, 2016, 528, 198-215.	2.4	64
110	Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay. Physical Review Letters, 2016, 116, 061801.	7.8	161
111	Comparative metalloproteomic approaches for the investigation proteins involved in the toxicity of inorganic and organic forms of mercury in rice (Oryza sativa L.) roots. Metallomics, 2016, 8, 663-671.	2.4	30
112	Demethylation of methylmercury in growing rice plants: An evidence of self-detoxification. Environmental Pollution, 2016, 210, 113-120.	7. 5	43
113	The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species. Plant and Soil, 2016, 398, 87-97.	3.7	73
114	New Measurement of Antineutrino Oscillation with the Full Detector Configuration at Daya Bay. Physical Review Letters, 2015, 115, 111802.	7.8	176
115	Constraining absolute neutrino masses via detection of galactic supernova neutrinos at JUNO. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 044-044.	5.4	17
116	Light sterile neutrinos. Journal of Physics G: Nuclear and Particle Physics, 2015, 43, 033001.	3.6	134
117	Identification and quantification of seleno-proteins by 2-DE-SR-XRF in selenium-enriched yeasts. Journal of Analytical Atomic Spectrometry, 2015, 30, 1408-1413.	3.0	15
118	Detection prospects of the cosmic neutrino background. International Journal of Modern Physics A, 2015, 30, 1530031.	1.5	6
119	The concentration of selenium matters: a field study on mercury accumulation in rice by selenite treatment in qingzhen, Guizhou, China. Plant and Soil, 2015, 391, 195-205.	3.7	61
120	Synchrotron radiation techniques for nanotoxicology. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1531-1549.	3.3	29
121	Accumulation and transformation of nanomaterials in ecological model organisms investigated by using synchrotron radiation techniques. Journal of Analytical Atomic Spectrometry, 2015, 30, 2038-2047.	3.0	4
122	Detection Prospects of the Cosmic Neutrino Background. Advanced Series on Directions in High Energy Physics, 2015, , 233-242.	0.7	1
123	Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival. Environmental Pollution, 2014, 192, 204-211.	7. 5	48
124	Tests of Lorentz and <pre>cmml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" > <pre>cmml:mi>C</pre>/mml:mi><pre>cmml:mi>P</pre>/mml:mi><pre>cmml:mi>T</pre>/mml:mi></pre> /mml:mi> <pre>cmml:mi>C</pre> /mml:mi>C/mm	/m nl/ matl	n>v io lation
125	Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions. Nuclear Physics B, 2014, 888, 137-153.	2.5	13
126	Muon-decay medium-baseline neutrino beam facility. Physical Review Special Topics: Accelerators and Beams, 2014, 17 , .	1.8	44

#	Article	IF	Citations
127	Nanometallomics: an emerging field studying the biological effects of metal-related nanomaterials. Metallomics, 2014, 6, 220.	2.4	37
128	Search for a Light Sterile Neutrino at Daya Bay. Physical Review Letters, 2014, 113, 141802.	7.8	79
129	Spectral Measurement of Electron Antineutrino Oscillation Amplitude and Frequency at Daya Bay. Physical Review Letters, 2014, 112, 061801.	7.8	219
130	Urinary Concentrations of Toxic and Essential Trace Elements among Rural Residents in Hainan Island, China. International Journal of Environmental Research and Public Health, 2014, 11, 13047-13064.	2.6	20
131	Overview of the Jiangmen Underground Neutrino Observatory (JUNO). International Journal of Modern Physics Conference Series, 2014, 31, 1460300.	0.7	50
132	Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum). Environmental Research, 2013, 125, 75-81.	7.5	73
133	Pragmatic view of short-baseline neutrino oscillations. Physical Review D, 2013, 88, .	4.7	139
134	Day-night asymmetries in active-sterile solar neutrino oscillations. Journal of High Energy Physics, 2013, 2013, 1.	4.7	11
135	Short-baseline electron neutrino oscillation length after the Troitsk experiment. Physical Review D, 2013, 87, .	4.7	26
136	Direct detection of hot dark matter in the form of active and sterile neutrinos., 2013,,.		0
137	Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos. Physical Review D, 2013, 88, .	4.7	177
138	CP-violating phases in active-sterile solar neutrino oscillations. Physical Review D, 2013, 87, .	4.7	8
139	MCMC SAMPLING IN THE GLOBAL ANALYSIS OF SOLAR AND REACTOR NEUTRINO DATA. International Journal of Modern Physics A, 2013, 28, 1350005.	1.5	0
140	Direct detection of hot dark matter including light sterile neutrinos. Journal of Physics: Conference Series, 2012, 375, 012010.	0.4	1
141	Q6flavor symmetry model for the extension of the minimal standard model by three right-handed sterile neutrinos. Physical Review D, 2012, 85, .	4.7	46
142	Organic Selenium Supplementation Increases Mercury Excretion and Decreases Oxidative Damage in Long-Term Mercury-Exposed Residents from Wanshan, China. Environmental Science & Eamp; Technology, 2012, 46, 11313-11318.	10.0	76
143	Update of short-baseline electron neutrino and antineutrino disappearance. Physical Review D, 2012, 86, .	4.7	121
144	Vanishing effective mass of the neutrinoless double beta decay including light sterile neutrinos. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 706, 406-411.	4.1	48

#	Article	IF	Citations
145	Full quantification of selenium species by RP and AF-ICP-qMS with on-line isotope dilution in serum samples from mercury-exposed people supplemented with selenium-enriched yeast. Journal of Analytical Atomic Spectrometry, 2011, 26, 224-229.	3.0	15
146	Fate and Toxicity of Metallic and Metalâ€Containing Nanoparticles for Biomedical Applications. Small, 2011, 7, 2965-2980.	10.0	199
147	Possible capture of keV sterile neutrino dark matter on radioactive β-decaying nuclei. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 695, 205-210.	4.1	43
148	A possible detection of the cosmic antineutrino background in the presence of flavor effects. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 698, 430-437.	4.1	10
149	Captures of hot and warm sterile antineutrino dark matter on EC-decaying63Honuclei. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 006-006.	5.4	18
150	Title is missing!. Acta Physica Polonica B, 2011, 42, 2193.	0.8	3
151	Direct detection of the cosmic neutrino background including light sterile neutrinos. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2010, 692, 261-267.	4.1	29
152	Matter effects in active–sterile solar neutrino oscillations. Progress in Particle and Nuclear Physics, 2010, 64, 213-215.	14.4	3
153	CORRECTIONS TO TRIBIMAXIMAL MIXING FROM NONDEGENERATE PHASES. Modern Physics Letters A, 2010, 25, 63-78.	1.2	4
154	Matter effects in active-sterile solar neutrino oscillations. Physical Review D, 2009, 80, .	4.7	31
155	Mercury in human hair and blood samples from people living in Wanshan mercury mine area, Guizhou, China: An XAS study. Journal of Inorganic Biochemistry, 2008, 102, 500-506.	3.5	20
156	Scalp hair as a biomarker in environmental and occupational mercury exposed populations: Suitable or not?. Environmental Research, 2008, 107, 39-44.	7.5	43
157	Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. Journal of Analytical Atomic Spectrometry, 2008, 23, 1121.	3.0	7 5
158	Metallomics, elementomics, and analytical techniques. Pure and Applied Chemistry, 2008, 80, 2577-2594.	1.9	33
159	Simultaneous speciation of selenium and mercury in human urine samples from long-term mercury-exposed populations with supplementation of selenium-enriched yeast by HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2007, 22, 925.	3.0	50
160	Distribution of TiO2 particles in the olfactory bulb of mice after nasal inhalation using microbeam SRXRF mapping techniques. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 527-531.	1.5	37
161	Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. Journal of Analytical Atomic Spectrometry, 2006, 21, 94-96.	3.0	322
162	XAFS study on interactions of metallothionein, mercuric chloride and/or sodium selenite. Diqiu Huaxue, 2006, 25, 124-124.	0.5	0

Yu-Feng Li

#	Article	IF	CITATIONS
163	A paradox on quantum field theory of neutrino mixing and oscillations. Journal of High Energy Physics, 2006, 2006, 048-048.	4.7	12
164	Antineutrino Energy Spectrum Unfolding Based on the Daya Bay Measurement and Its Applications. Chinese Physics C, 0, , .	3.7	13