Christian Bruneau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3458425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ruthenium(II)-Catalyzed C–H Bond Activation and Functionalization. Chemical Reviews, 2012, 112, 5879-5918.	47.7	2,520
2	Metal Vinylidenes in Catalysis. Accounts of Chemical Research, 1999, 32, 311-323.	15.6	485
3	Metal Vinylidenes and Allenylidenes in Catalysis: Applications in Anti-Markovnikov Additions to Terminal Alkynes and Alkene Metathesis. Angewandte Chemie - International Edition, 2006, 45, 2176-2203.	13.8	469
4	Transition metal catalyzed nucleophilic allylic substitution: activation of allylic alcohols via ï€-allylic species. Chemical Society Reviews, 2012, 41, 4467.	38.1	426
5	Direct Arylation of Arene Câ [~] 'H Bonds by Cooperative Action of NHCarbeneâ [~] 'Ruthenium(II) Catalyst and Carbonate via Proton Abstraction Mechanism. Journal of the American Chemical Society, 2008, 130, 1156-1157.	13.7	367
6	Electrophilic Activation and Cycloisomerization of Enynes: A New Route to Functional Cyclopropanes. Angewandte Chemie - International Edition, 2005, 44, 2328-2334.	13.8	352
7	Autocatalysis for C–H Bond Activation by Ruthenium(II) Complexes in Catalytic Arylation of Functional Arenes. Journal of the American Chemical Society, 2011, 133, 10161-10170.	13.7	345
8	Cationic Ruthenium Allenylidene Complexes as Catalysts for Ring Closing Olefin Metathesis. Chemistry - A European Journal, 2000, 6, 1847-1857.	3.3	268
9	CH Bond Functionalization in Water Catalyzed by Carboxylato Ruthenium(II) Systems. Angewandte Chemie - International Edition, 2010, 49, 6629-6632.	13.8	240
10	Cationic ruthenium allenylidene complexes as a new class of performing catalysts for ring closing metathesis. Chemical Communications, 1998, , 1315-1316.	4.1	217
11	Chiral monodentate phosphorus ligands for rhodium-catalyzed asymmetric hydrogenation. Tetrahedron: Asymmetry, 2004, 15, 2101-2111.	1.8	212
12	Activation and functionalization of benzylic derivatives by palladium catalysts. Chemical Society Reviews, 2008, 37, 290-299.	38.1	172
13	sp ³ C–H Bond Activation with Ruthenium(II) Catalysts and C(3)-Alkylation of Cyclic Amines. Journal of the American Chemical Society, 2011, 133, 10340-10343.	13.7	166
14	General Synthesis of (Z)-Alk-1-en-1-yl Esters via Ruthenium-Catalyzed anti-Markovnikov trans-Addition of Carboxylic Acids to Terminal Alkynes. Journal of Organic Chemistry, 1995, 60, 7247-7255.	3.2	161
15	6-Mesityl,1-Imidazolinylidene–Carbene–Ruthenium(II) Complexes: Catalytic Activity of their Allenylidene Derivatives in Alkene Metathesis and Cycloisomerisation Reactions. Chemistry - A European Journal, 2003, 9, 2323-2330.	3.3	149
16	Selective transformations of alkynes with ruthenium catalysts. Chemical Communications, 1997, , 507-512.	4.1	146
17	Ruthenium diacetate-catalysed oxidative alkenylation of C–H bonds in air: synthesis of alkenyl N-arylpyrazoles. Green Chemistry, 2011, 13, 3075.	9.0	142
18	First ring-opening metathesis polymerization in an ionic liquid. Efficient recycling of a catalyst generated from a cationic ruthenium allenylidene complex. New Journal of Chemistry, 2002, 26, 1667-1670.	2.8	137

#	Article	IF	CITATIONS
19	Diethyl carbonate as a solvent for ruthenium catalysed C–H bond functionalisation. Green Chemistry, 2009, 11, 1871.	9.0	131
20	Catalytic synthesis of vinyl carbamates from carbon dioxide and alkynes with ruthenium complexes. Journal of Organic Chemistry, 1989, 54, 1518-1523.	3.2	130
21	Pentamethylcyclopentadienyl–Ruthenium Catalysts for Regio- and Enantioselective Allylation of Nucleophiles. Chemistry - A European Journal, 2006, 12, 5178-5187.	3.3	125
22	[Cp*(η2-bipy)(MeCN)Rull][PF6] Catalysts for Regioselective Allylic Substitution and Characterization of Dicationic [Cp*(η2-bipy)(η3-allyl)RulV][PF6]2 Intermediates. Angewandte Chemie - International Edition, 2003, 42, 5066-5068.	13.8	124
23	Iridiumâ€Catalyzed Oxidantâ€Free Dehydrogenative CH Bond Functionalization: Selective Preparation of Nâ€Arylpiperidines through Tandem Hydrogen Transfers. Angewandte Chemie - International Edition, 2012, 51, 8876-8880.	13.8	120
24	Ruthenium(IV) Complexes Featuring P,Oâ€Chelating Ligands: Regioselective Substitution Directly from Allylic Alcohols. Angewandte Chemie - International Edition, 2010, 49, 2782-2785.	13.8	119
25	Renewable materials as precursors of linear nitrile-acid derivatives viacross-metathesis of fatty esters and acids with acrylonitrile and fumaronitrile. Green Chemistry, 2009, 11, 152-155.	9.0	118
26	First ruthenium complexes with a chelating arene carbene ligand as catalytic precursors for alkene metathesis and cycloisomerisation. New Journal of Chemistry, 2001, 25, 519-521.	2.8	117
27	Ruthenium-catalyzed synthesis of symmetrical N,N'-dialkylureas directly from carbon dioxide and amines. Journal of Organic Chemistry, 1991, 56, 4456-4458.	3.2	110
28	Ethenolysis: A Green Catalytic Tool to Cleave Carbon–Carbon Double Bonds. Chemistry - A European Journal, 2016, 22, 12226-12244.	3.3	106
29	Catalytic incorporation of CO2 into organic substrates: Synthesis of unsaturated carbamates, carbonates and ureas. Journal of Molecular Catalysis, 1992, 74, 97-107.	1.2	100
30	Imidazolium and Imidazolinium Salts as Carbene Precursors or Solvent for Ruthenium-Catalysed Diene and Enyne Metathesis. Advanced Synthesis and Catalysis, 2002, 344, 585.	4.3	99
31	Rutheniumâ€Catalyzed Cascade N―and C(3)â€Dialkylation of Cyclic Amines with Alcohols Involving Hydrogen Autotransfer Processes. Advanced Synthesis and Catalysis, 2010, 352, 3141-3146.	4.3	98
32	Ruthenium–alkylidene catalysed cross-metathesis of fatty acid derivatives with acrylonitrile and methyl acrylate: a key step toward long-chain bifunctional and amino acid compounds. Green Chemistry, 2011, 13, 2911.	9.0	97
33	Phosphine catalysed synthesis of unsaturated cyclic carbonates from carbon dioxide and propargylic alcohols. Tetrahedron Letters, 1989, 30, 3981-3982.	1.4	95
34	Room temperature operating allenylidene precatalyst [LnRuξCξCξCR2]+X- for olefin metathesis: dramatic influence of the counter anion X New Journal of Chemistry, 1999, 23, 141-143.	2.8	94
35	Catalytic synthesis of 3-vinyl-2,5-dihydrofurans from yne-enes promoted by photochemically activated metal–allenylidene LnRuCCCR2 complex. Chemical Communications, 1998, , 2249-2250.	4.1	93
36	Dimethyl Carbonate: An Ecoâ€Friendly Solvent in Rutheniumâ€Catalyzed Olefin Metathesis Transformations. ChemSusChem, 2008, 1, 813-816.	6.8	91

#	Article	IF	CITATIONS
37	Alkene metathesis catalysis in ionic liquids with ruthenium allenylidene salts. Chemical Communications, 2002, , 146-147.	4.1	88
38	Enol formates: ruthenium catalysed formation and formylating reagents. Journal of the Chemical Society Perkin Transactions 1, 1991, , 1197.	0.9	87
39	Michael additions of carbonucleophiles to butenone catalyzed by the non-hydride [Ru(O2CH)(CO)2(PPh3)]2 complex. Tetrahedron, 1999, 55, 3937-3948.	1.9	87
40	Ethenolysis of Methyl Oleate in Roomâ€Temperature Ionic Liquids. ChemSusChem, 2008, 1, 118-122.	6.8	86
41	Ruthenium-CatalyzedO-Allylation of Phenols from Allylic Chloridesvia Cationic[Cp*(η3-allyl)(MeCN)RuX][PF6] Complexes. Advanced Synthesis and Catalysis, 2004, 346, 835-841.	4.3	85
42	Autocatalytic Intermolecular versus Intramolecular Deprotonation in CH Bond Activation of Functionalized Arenes by Ruthenium(II) or Palladium(II) Complexes. Chemistry - A European Journal, 2013, 19, 7595-7604.	3.3	85
43	Ruthenium-Catalysed Enantioselective Hydrogenation of Trisubstituted Enamides Derived from 2-Tetralone and 3-Chromanone: Influence of Substitution on the Amide Arm and the Aromatic Ring. Advanced Synthesis and Catalysis, 2003, 345, 230-238.	4.3	82
44	Ruthenium(<scp>ii</scp>)-catalyzed selective monoarylation in water and sequential functionalisations of C–H bonds. Green Chemistry, 2013, 15, 67-71.	9.0	79
45	Ruthenium-Catalysed Additions to Alkynes: Synthesis of Activated Esters and Their Use in Acylation Reactions. Synlett, 1991, 1991, 755-763.	1.8	78
46	Novel ruthenium-catalysed synthesis of furan derivatives via intramolecular cyclization of hydroxy enynes. Journal of the Chemical Society Chemical Communications, 1994, , 493.	2.0	78
47	First enantioselective allylic etherification with phenols catalyzed by chiral ruthenium bisoxazoline complexes. Chemical Communications, 2004, , 1870.	4.1	76
48	Cross-metathesis transformations of terpenoids in dialkyl carbonate solvents. Green Chemistry, 2011, 13, 1448.	9.0	76
49	Palladium-catalysed direct arylation of thiophenes tolerant to silyl groups. Chemical Communications, 2011, 47, 1872-1874.	4.1	76
50	Ruthenium-carbene catalysts for the synthesis of 2,3-dimethylfuran. Journal of Molecular Catalysis A, 1997, 118, L1-L4.	4.8	75
51	Nâ€Heterocyclic Carbenes: Useful Ligands for the Palladium atalysed Direct C5 Arylation of Heteroaromatics with Aryl Bromides or Electronâ€Deficient Aryl Chlorides. European Journal of Inorganic Chemistry, 2010, 2010, 1798-1805.	2.0	75
52	Ene–yne cross-metathesis with ruthenium carbene catalysts. Beilstein Journal of Organic Chemistry, 2011, 7, 156-166.	2.2	73
53	Synthesis and catalytic applications of palladium N-heterocyclic carbene complexes as efficient pre-catalysts for Suzuki–Miyaura and Sonogashira coupling reactions. New Journal of Chemistry, 2017, 41, 5105-5113.	2.8	73
54	Ruthenium Catalyst Dichotomy: Selective Catalytic Diene Cycloisomerization or Metathesis. Helvetica Chimica Acta, 2001, 84, 3335-3341.	1.6	72

#	Article	IF	CITATIONS
55	Functional carbonates: cyclic \hat{l}_{\pm} -methylene and \hat{l}^2 -oxopropyl carbonates from prop-2-ynyl alcohol derivatives and CO2. Journal of the Chemical Society Perkin Transactions 1, 1991, , 3271-3274.	0.9	71
56	Stereoselective synthesis of Z-enol esters catalysed by [bis(diphenylphosphino)alkane]bis(2-methylpropenyl)ruthenium complexes. Journal of the Chemical Society Chemical Communications, 1993, , 850-851.	2.0	71
57	Optically Active Amine Derivatives: Ruthenium-Catalyzed Enantioselective Hydrogenation of Enamides. Synlett, 1999, 1999, 1832-1834.	1.8	71
58	Polyamide precursors from renewable 10-undecenenitrile and methyl acrylate via olefin cross-metathesis. Green Chemistry, 2012, 14, 2179.	9.0	71
59	<i>Z</i> Selectivity: Recent Advances in one of the Current Major Challenges of Olefin Metathesis. ChemCatChem, 2013, 5, 3436-3459.	3.7	69
60	Synthesis of Fluorine-Containing Cyclic α-Amino Acid and α-Amino Phosphonate Derivatives by Alkene Metathesis. European Journal of Organic Chemistry, 2001, 2001, 3891-3897.	2.4	66
61	Lewis Acid-Catalyzed Sequential Transformations: Straightforward Preparation of Functional Dihydropyridines. Advanced Synthesis and Catalysis, 2006, 348, 2571-2574.	4.3	66
62	Selective and Efficient Iridium Catalyst for the Reductive Amination of Levulinic Acid into Pyrrolidones. ChemSusChem, 2017, 10, 4150-4154.	6.8	66
63	A Direct Route to Bifunctional Aldehyde Derivatives via Self―and Crossâ€Metathesis of Unsaturated Aldehydes. ChemSusChem, 2009, 2, 542-545.	6.8	65
64	Eugenol as a renewable feedstock for the production of polyfunctional alkenes via olefin cross-metathesis. RSC Advances, 2012, 2, 9584.	3.6	65
65	Fluorine-containing α-alkynyl amino esters and access to a new family of 3,4-dehydroproline analogues. New Journal of Chemistry, 2001, 25, 16-18.	2.8	64
66	Rate Studies and Mechanism of Ring-Closing Olefin Metathesis Catalyzed by Cationic Ruthenium Allenylidene Arene Complexes. Organometallics, 2003, 22, 4459-4466.	2.3	64
67	Recovery of Enlarged Olefin Metathesis Catalysts by Nanofiltration in an Ecoâ€Friendly Solvent. ChemSusChem, 2008, 1, 927-933.	6.8	63
68	Novel ruthenium-catalyzed synthesis of 1,3-dioxolan-4-ones from α-hydroxy acids and terminal alkynes via enol esters. Journal of Organometallic Chemistry, 1993, 451, 133-138.	1.8	61
69	Palladium atalysed Direct Polyarylation of Pyrrole Derivatives. ChemCatChem, 2013, 5, 255-262.	3.7	60
70	Catalytic synthesis of O-β-oxoalkylcarbamates. Tetrahedron Letters, 1987, 28, 2005-2008.	1.4	59
71	Tandem Catalytic Acrylonitrile Crossâ€Metathesis and Hydrogenation of Nitriles with Ruthenium Catalysts: Direct Access to Linear α,ï‰â€Aminoesters from Renewables. ChemSusChem, 2012, 5, 1410-1414.	6.8	59
72	Ruthenium Phosphine–Pyridone Catalyzed Cross-Coupling of Alcohols To form α-Alkylated Ketones. Journal of Organic Chemistry, 2017, 82, 10727-10731.	3.2	58

#	Article	IF	CITATIONS
73	Allenylidene–ruthenium complexes as versatile precatalysts for alkene metathesis reactions. Journal of Molecular Catalysis A, 2004, 213, 31-37.	4.8	57
74	Synthesis of β-aminoacid derivatives via enantioselective hydrogenation of β-substituted-β-(acylamino)acrylates. Coordination Chemistry Reviews, 2008, 252, 532-544.	18.8	57
75	Ruthenium-Catalyzed Reductive Amination of Allylic Alcohols. Organic Letters, 2011, 13, 3964-3967.	4.6	57
76	Ruthenium atalyzed Synthesis of Allylic Alcohols: Boronic Acid as a Hydroxide Source. Chemistry - A European Journal, 2008, 14, 5630-5637.	3.3	56
77	Efficient Iridium Catalysts for Base-Free Hydrogenation of Levulinic Acid. Organometallics, 2017, 36, 3152-3162.	2.3	56
78	Ruthenium-catalyzed C–H bond functionalization in cascade and one-pot transformations. Coordination Chemistry Reviews, 2021, 428, 213602.	18.8	56
79	A green route to nitrogen-containing groups: the acrylonitrile cross-metathesis and applications to plant oil derivatives. Green Chemistry, 2011, 13, 2258.	9.0	55
80	A simple synthesis of oxazolidinones in one step from carbon dioxide. Tetrahedron Letters, 1990, 31, 1721-1722.	1.4	54
81	Activation of 1-alkynes at tripodal (polyphosphine)rhodium systems. Regioselective synthesis of enol esters from 1-alkynes and carboxylic acids catalyzed by rhodium(I) monohydrides. Organometallics, 1990, 9, 1155-1160.	2.3	54
82	Synthesis, Characterization and Catalytic Activity of New N-Heterocyclic Bis(carbene)ruthenium Complexes. European Journal of Inorganic Chemistry, 2009, 2009, 1942-1949.	2.0	54
83	Cross-metathesis with acrylonitrile and applications to fatty acid derivatives. European Journal of Lipid Science and Technology, 2010, 112, 3-9.	1.5	54
84	Iridiumâ€Catalyzed Hydrogenation and Dehydrogenation of Nâ€Heterocycles in Water under Mild Conditions. ChemSusChem, 2019, 12, 2350-2354.	6.8	54
85	Enantioselective Hydrogenation of the Tetrasubstituted C=C Bond of Enamides Catalyzed by a Ruthenium Catalyst Generatedin situ. Advanced Synthesis and Catalysis, 2001, 343, 331-334.	4.3	52
86	Ruthenium-Catalyzed One-Step Transformation of Propargylic Alcohols into Alkylidene Cyclobutenes: X-ray Characterization of an Ru(η3-cyclobutenyl) Intermediate. Angewandte Chemie - International Edition, 2001, 40, 2912-2915.	13.8	51
87	Pentamethylcyclopentadienyl ruthenium: an efficient catalyst for the redox isomerization of functionalized allylic alcohols into carbonyl compounds. Tetrahedron, 2008, 64, 11745-11750.	1.9	51
88	N-Alkylation and N,C-Dialkylation of Amines with Alcohols in the Presence of Ruthenium Catalysts with Chelating N-Heterocyclic Carbene Ligands. Organometallics, 2015, 34, 2296-2304.	2.3	51
89	PEPPSI-Type Palladium-NHC Complexes: Synthesis, Characterization, and Catalytic Activity in the Direct C5-Arylation of 2-Substituted Thiophene Derivatives with Aryl Halides. European Journal of Inorganic Chemistry, 2017, 2017, 1382-1391.	2.0	51
90	Allylic ruthenium(IV) complexes in catalysis. Coordination Chemistry Reviews, 2012, 256, 525-536.	18.8	50

#	Article	IF	CITATIONS
91	Simple New Three-component Catalytic System for Enyne Metathesis. Synlett, 2001, 2001, 0397-0399.	1.8	49
92	First Transformation of Unsaturated Fatty Esters Involving Enyne Crossâ€Metathesis. Advanced Synthesis and Catalysis, 2009, 351, 1115-1122.	4.3	48
93	C–H bond functionalisation with [RuH(codyl)2]BF4 catalyst precursor. Green Chemistry, 2011, 13, 2315.	9.0	48
94	Benzylic Imidazolidinium, 3,4,5,6â€Tetrahydropyrimidinium and Benzimidazolium Salts: Applications in Rutheniumâ€Catalyzed Allylic Substitution Reactions. European Journal of Organic Chemistry, 2008, 2008, 2142-2149.	2.4	47
95	Selective Rutheniumâ€Catalyzed Hydrochlorination of Alkynes: Oneâ€Step Synthesis of Vinylchlorides. Angewandte Chemie - International Edition, 2015, 54, 12112-12115.	13.8	47
96	Preparation of Optically Active Cyclic Carbonates and 1,2-DiolsviaEnantioselective Hydrogenation of α-Methylenedioxolanones Catalyzed by Chiral Ruthenium(II) Complexes. Journal of Organic Chemistry, 1996, 61, 8453-8455.	3.2	46
97	Newin situ Generated Ruthenium Catalyst for Enyne Metathesis: Access to Novel Cyclic Siloxanes. Advanced Synthesis and Catalysis, 2001, 343, 184-187.	4.3	46
98	Novel [Ruthenium(substitutedâ€ŧetramethylcyclopentadiene) (2â€quinolinecarboxylato)(allyl)] Hexafluorophosphate Complexes as Efficient Catalysts for Highly Regioselective Nucleophilic Substitution of Aliphatic Allylic Substrates. Advanced Synthesis and Catalysis, 2008, 350, 1601-1609.	4.3	46
99	Ruthenium–Benzylidenes and Ruthenium–Indenylidenes as Efficient Catalysts for the Hydrogenation of Aliphatic Nitriles into Primary Amines. ChemCatChem, 2012, 4, 1911-1916.	3.7	46
100	Unmasking Amides: Ruthenium-Catalyzed Protodecarbonylation of N-Substituted Phthalimide Derivatives. Organic Letters, 2017, 19, 6404-6407.	4.6	46
101	Selective isomerisation of prop-2-yn-1-ols into $\hat{I}\pm,\hat{I}^2$ -unsaturated aldehydes catalysed by Ru[$\hat{I}\cdot3$ -CH2C(Me)CH2]2(Ph 2PCH2CH2PPh2). Chemical Communications, 1997, , 1201-1202.	4.1	45
102	Direct Preparation of [Ru(η2-O2CO)(η6-arene)(L)] Carbonate Complexes (L = Phosphane, Carbene) and Their Use as Precursors of [RuH2(p-cymene)(PCy3)] and [Ru(η6-arene)(L)(MeCN)2][BF4]2: X-ray Crystal Structure Determination of [Ru(η2-O2CO)(p-cymene)(PCy3)]·1/2CH2Cl2 and [Ru(η2-O2CO)(η6-C6Me6)(PMe3)]·H2O. European Journal of Inorganic Chemistry, 2006, 2006, 1174-1181.	2.0	45
103	Acceptorless ruthenium catalyzed dehydrogenation of alcohols to ketones and esters. Catalysis Science and Technology, 2012, 2, 1425.	4.1	45
104	Synthesis of N-heterocyclic carbene-palladium-PEPPSI complexes and their catalytic activity in the direct C-H bond activation. Journal of Organometallic Chemistry, 2018, 867, 404-412.	1.8	45
105	Baseâ€Free Dehydrogenation of Aqueous and Neat Formic Acid with Iridium(III) Cp*(dipyridylamine) Catalysts. ChemSusChem, 2019, 12, 179-184.	6.8	45
106	Selective transformations of alkynols catalyzed by ruthenium complexes. Inorganica Chimica Acta, 1994, 222, 155-163.	2.4	44
107	Selective carbon–carbon bond formation: terpenylations of amines involving hydrogen transfers. Green Chemistry, 2013, 15, 775.	9.0	44
108	Ruthenium(II)-Catalysed Functionalisation of C–H Bonds with Alkenes: Alkenylation versus Alkylation. Topics in Organometallic Chemistry, 2015, , 137-188.	0.7	44

Christian Bruneau

#	Article	IF	CITATIONS
109	Enol esters as intermediates for the facile conversion of amino acids into amides and dipeptides. Tetrahedron Letters, 1991, 32, 5359-5362.	1.4	43
110	Ruthenium-Bisimine: A New Catalytic Precursor for Regioselective Allylic Alkylation. Synlett, 2003, 2003, 0408-0410.	1.8	43
111	Ionic imidazolium containing ruthenium complexes and olefin metathesis in ionic liquids. Journal of Molecular Catalysis A, 2007, 268, 127-133.	4.8	43
112	Ruthenium catalysts for selective nucleophilic allylic substitution. Pure and Applied Chemistry, 2008, 80, 861-871.	1.9	43
113	<i>N</i> -Heterocyclic carbene–palladium catalysts for the direct arylation of pyrrole derivatives with aryl chlorides. Beilstein Journal of Organic Chemistry, 2013, 9, 303-312.	2.2	43
114	Powerful control by organoruthenium catalysts of the regioselective addition to C(1) or C(2) of the prop-2-ynyl ethers Cĩ †C triple bond. Journal of Organometallic Chemistry, 1998, 551, 151-157.	1.8	42
115	α-Diimines as nitrogen ligands for ruthenium-catalyzed allylation reactions and related (pentamethylcyclopentadienyl) ruthenium complexes. Journal of Organometallic Chemistry, 2005, 690, 2149-2158.	1.8	42
116	Efficient Synthesis of β-Aminoacrylates and β-Enaminones Catalyzed by Zn(OAc)2·2H2O. Collection of Czechoslovak Chemical Communications, 2005, 70, 1943-1952.	1.0	42
117	Cascade and Sequential Catalytic Transformations Initiated by Ruthenium Catalysts. , 0, , 295-326.		42
118	Palladium-Catalyzed Direct Arylation of 5-Chloropyrazoles: A Selective Access to 4-Aryl Pyrazoles. Journal of Organic Chemistry, 2012, 77, 7659-7664.	3.2	42
119	Enantioselective Hydrogenation ofβ-Acylamino Acrylates Catalyzed by Rhodium(I)-Monophosphite Complexes. Advanced Synthesis and Catalysis, 2004, 346, 33-36.	4.3	41
120	Access to 3-Methyl-4-methylene-N-tosylpyrrolidine and 3,4-DimethylN-tosylpyrroline by Ruthenium-Catalyzed Cascade Cycloisomerization/Isomerization Reactions. European Journal of Inorganic Chemistry, 2004, 2004, 418-422.	2.0	41
121	Concomitant Monoreduction and Hydrogenation of Unsaturated Cyclic Imides to Lactams Catalyzed by Ruthenium Compounds. Angewandte Chemie - International Edition, 2005, 44, 2021-2023.	13.8	39
122	A straightforward access to guaiazulene derivatives using palladium-catalysed sp2 or sp3 C–H bond functionalisation. Chemical Communications, 2013, 49, 5598.	4.1	39
123	sp3 C–H Bond Functionalization with Ruthenium Catalysts. Topics in Organometallic Chemistry, 2014, , 195-236.	0.7	39
124	Vicinal α,βâ€Functionalizations of Amines: Cyclization Versus Dehydrogenative Hydrolysis. Chemistry - A European Journal, 2015, 21, 14319-14323.	3.3	39
125	2-Imidazoline– and 1,4,5,6-tetrahydropyrimidine–ruthenium(II) complexes and catalytic synthesis of furan. Journal of Organometallic Chemistry, 1999, 575, 187-192.	1.8	38
126	Benzimidazole, Benzothiazole and Benzoxazole Ruthenium(II) Complexes; Catalytic Synthesis of 2,3-Dimethylfuran. European Journal of Inorganic Chemistry, 2000, 2000, 29-32.	2.0	38

#	Article	IF	CITATIONS
127	Stereoselective preparation of Z-trisubstituted alkylidene cyclic carbonates via palladium-catalyzed carbonî—,carbon bond formation. Tetrahedron Letters, 2000, 41, 5527-5531.	1.4	38
128	Ruthenium-Catalyzed Synthesis of Alkylidenecyclobutenes via Head-to-Head Dimerization of Propargylic Alcohols and Cyclobutadiene-Ruthenium Intermediates. Chemistry - A European Journal, 2005, 11, 1312-1324.	3.3	38
129	Isoquinoline Derivatives via Stepwise Regioselective sp2 and sp3 C–H Bond Functionalizations. Journal of Organic Chemistry, 2012, 77, 3674-3678.	3.2	38
130	Efficient preparations of acylamides, acylcarbamates and acylureas from alk-1-en-2-yl esters. Tetrahedron, 1995, 51, 10901-10912.	1.9	37
131	Efficient Ruthenium-Catalysed Synthesis of 3-Hydroxy-1-propen-1-yl Benzoates: En Route to an Improved Isomerization of 2-Propyn-1-ols into α,β-Unsaturated Aldehydes. European Journal of Organic Chemistry, 2000, 2000, 2361-2366.	2.4	37
132	Ruthenium–Indenylidene Olefin Metathesis Catalyst with Enhanced Thermal Stability. Chemistry - A European Journal, 2010, 16, 12255-12261.	3.3	36
133	Synthesis of functionalized CF3-containing heterocycles via [2,3]-sigmatropic rearrangement and sequential catalytic carbocyclization. Tetrahedron, 2011, 67, 3524-3532.	1.9	36
134	Reactivity of 3‣ubstituted Fluorobenzenes in Palladium―Catalysed Direct Arylations with Aryl Bromides. Advanced Synthesis and Catalysis, 2014, 356, 1586-1596.	4.3	36
135	Ruthenium and Iridium Dipyridylamine Catalysts for the Efficient Synthesis of Î ³ -Valerolactone by Transfer Hydrogenation of Levulinic Acid. Organometallics, 2017, 36, 708-713.	2.3	36
136	η3-Allylruthenium Complexes and Ruthenium-Catalysed Nucleophilic Substitution of Allylic Substrates. Current Organic Chemistry, 2006, 10, 115-133.	1.6	35
137	Thermal behavior of some organic phosphates. Industrial & Engineering Chemistry Product Research and Development, 1984, 23, 98-102.	0.5	34
138	Synthesis of fluorine-containing cyclic amino acid derivatives via ring closing olefin metathesis. Chemical Communications, 1998, , 2053-2054.	4.1	34
139	Regioselective allylic alkylation and etherification catalyzed by in situ generated N-heterocyclic carbene ruthenium complexes. Tetrahedron Letters, 2006, 47, 535-538.	1.4	34
140	Benzimidazolium sulfonate ligand precursors and application in ruthenium-catalyzed aromatic amine alkylation with alcohols. Catalysis Communications, 2016, 74, 33-38.	3.3	34
141	Tandem isomerization/Claisen transformation of allyl homoallyl and diallyl ethers into γ,Î′-unsaturated aldehydes with a new three component catalyst Ru3(CO)12/imidazolinium salt/Cs2CO3. Chemical Communications, 2002, , 1772-1773.	4.1	33
142	Alkylidene-Ruthenium-Tin Catalysts for the Formation of Fatty Nitriles and Esters via Cross-Metathesis of Plant Oil Derivativesâ€. Organometallics, 2010, 29, 5257-5262.	2.3	33
143	Phosphine-pyridonate ligands containing octahedral ruthenium complexes: access to esters and formic acid. Catalysis Science and Technology, 2017, 7, 3492-3498.	4.1	32
144	Synthesis of Heteroarylated Polyfluorobiphenyls via Palladium-Catalyzed Sequential sp ² C–H Bonds Functionalizations. Journal of Organic Chemistry, 2013, 78, 4177-4183.	3.2	31

#	Article	IF	CITATIONS
145	New optically active amido-phosphinite ligand and ruthenium complexes. Tetrahedron: Asymmetry, 1998, 9, 2279-2284.	1.8	30
146	A New Preparation of Optically ActiveN-Acyloxazolidinones via Ruthenium-Catalyzed Enantioselective Hydrogenation. Journal of Organic Chemistry, 1998, 63, 1806-1809.	3.2	30
147	Smart ruthenium catalysts for the selective catalytic transformations of alkynes. Pure and Applied Chemistry, 1998, 70, 1065-1070.	1.9	30
148	Improving Sustainability in Ene–Yne Crossâ€Metathesis for Transformation of Unsaturated Fatty Esters. ChemSusChem, 2010, 3, 1291-1297.	6.8	30
149	Synthesis of αâ€Alkynylâ€î²,î²,î²â€trifluoroalanine Derivatives by Sonogashira Crossâ€Coupling Reaction. Europe Journal of Organic Chemistry, 2010, 2010, 1587-1592.	an 2.4	30
150	Rutheniumâ€Catalyzed Synthesis of 1,2â€Diketones from Alkynes. European Journal of Organic Chemistry, 2014, 2014, 5071-5077.	2.4	30
151	Iridium atalyzed Sustainable Access to Functionalized Julolidines through Hydrogen Autotransfer. ChemCatChem, 2015, 7, 1090-1096.	3.7	30
152	Synthesis and Reactivity of [Ru(Cp*)(L)(MeCN)2][PF6] (L = Ph2POMe or Ph2P-o-tolyl) and {Ru(Cp*)[Ph2PCH2C(tBu)=O](MeCN)}[PF6] Complexes, Their Involvement as Catalyst Precursors for Regioselective Allylic Substitution Reactions and Related [Ru(Cp*)Cl(Ph2POMe)(RCHCHCH2)][PF6] Î-3-Allyl Ruthenium(IV) Intermediates, European Journal of Inorganic Chemistry, 2006, 2006, 1371-1380.	2.0	29
153	Phosphineâ€Free Palladium Catalytic System for the Selective Direct Arylation of Furans or Thiophenes bearing Alkenes and Inhibition of Heckâ€Type Reaction. Advanced Synthesis and Catalysis, 2011, 353, 2749-2760.	4.3	29
154	Novel syntheses of oxamides, oxamates and oxalates from diisopropenyl oxalate. Tetrahedron, 1993, 49, 2629-2640.	1.9	28
155	A new dicoumarinyl ether and two rare furocoumarins from Ruta montana. Fìtoterapìâ, 2003, 74, 194-196.	2.2	28
156	Chemical Composition of the Essential Oil of Rosmarinus officinalis Cultivated in the Algerian Sahara. Chemistry of Natural Compounds, 2004, 40, 28-29.	0.8	28
157	Analysis of the essential oil ofThymus numidicus (Poiret) from Algeria. Flavour and Fragrance Journal, 2005, 20, 235-236.	2.6	28
158	Indirect and direct catalytic asymmetric reductive amination of 2-tetralone. Tetrahedron: Asymmetry, 2010, 21, 1350-1354.	1.8	28
159	Methyl Ricinoleate as Platform Chemical for Simultaneous Production of Fine Chemicals and Polymer Precursors. ChemSusChem, 2012, 5, 2249-2254.	6.8	28
160	Selective Catalytic Transformations of Alkynyl Cyclic Carbonates into either Homopropargylic or α-Allenyl Alcohols. Synlett, 1994, 1994, 457-458.	1.8	27
161	Ruthenium-Catalyzed Synthesis of Functionalized 1,3-Dienes. Organic Letters, 2009, 11, 185-188.	4.6	27
162	Immobilisation of an ionically tagged Hoveyda catalyst on a supported ionic liquid membrane: An innovative approach for metathesis reactions in a catalytic membrane reactor. Catalysis Today, 2010, 156, 268-275.	4.4	27

#	Article	IF	CITATIONS
163	Ruthenium ontaining Phosphinesulfonate Chelate for the Hydrogenation of Aryl Ketones. Chemistry - A European Journal, 2013, 19, 10343-10352.	3.3	27
164	Phosphine-free palladium-catalysed direct C2-arylation of benzothiophenes with aryl bromides. Tetrahedron, 2013, 69, 7082-7089.	1.9	27
165	Metathesis Catalysts with Fluorinated Unsymmetrical NHC Ligands. Organometallics, 2015, 34, 2305-2313.	2.3	27
166	C–H Bond Alkylation of Cyclic Amides with Maleimides via a Site-Selective-Determining Six-Membered Ruthenacycle. Journal of Organic Chemistry, 2019, 84, 16183-16191.	3.2	27
167	Group 8 Metals-Catalyzed O–H Bond Addition to Unsaturated Molecules. Topics in Organometallic Chemistry, 2011, , 203-230.	0.7	26
168	Preparation of chiral ruthenium(iv) complexes and applications in regio- and enantioselective allylation of phenols. Dalton Transactions, 2011, 40, 5625.	3.3	25
169	Cyclobutene Ring-Opening of Bicyclo[4.2.0]octa-1,6-dienes: Access to CF3-Substituted 5,6,7,8-Tetrahydro-1,7-naphthyridines. Journal of Organic Chemistry, 2012, 77, 8518-8526.	3.2	25
170	Iron-catalysed tandem isomerisation/hydrosilylation reaction of allylic alcohols with amines. RSC Advances, 2014, 4, 25892.	3.6	25
171	Terminal conjugated dienes via a ruthenium-catalyzed cross-metathesis/elimination sequence: application to renewable resources. Catalysis Science and Technology, 2014, 4, 2064-2071.	4.1	25
172	Ru-Catalyzed Selective C–H Bond Hydroxylation of Cyclic Imides. Journal of Organic Chemistry, 2019, 84, 1898-1907.	3.2	25
173	Concomitant catalytic transformations of geminal ethynyl and hydroxy groups of steroids into acetyl and ester functions with retention of configuration by [Ru(µ-O2CH)(CO)2(PPh3)]2. Journal of the Chemical Society Chemical Communications, 1994, .	2.0	24
174	Synthesis of alkenyl-2,5-dihydrofurans via palladium-catalysed reaction of cyclic alkynyl carbonates. Chemical Communications, 1996, , 919.	4.1	24
175	New route to optically active amine derivatives: ruthenium-catalyzed enantioselective hydrogenation of ene carbamates. Tetrahedron: Asymmetry, 1999, 10, 3467-3471.	1.8	24
176	Synthesis of new terpene derivatives via ruthenium catalysis: rearrangement of silylated enynes derived from terpenoids. Tetrahedron, 2003, 59, 9425-9432.	1.9	24
177	Allenylidene to Indenylidene Rearrangement in Cationic <i>p</i> -Cymene Ruthenium(II) Complexes: Solvent, Counteranion, and Substituent Effects in the Key Step toward Catalytic Olefin Metathesis. Organometallics, 2010, 29, 4524-4531.	2.3	24
178	Ester as a blocking group for palladium-catalysed direct forced arylation at the unfavourable site of heteroaromatics: simple access to the less accessible regioisomers. Green Chemistry, 2012, 14, 1111.	9.0	24
179	Access to Cyclic αâ€CF ₃ â€Substituted αâ€Amino Acid Derivatives by Ringâ€Closing Metathesis of Functionalized 1,7â€Enynes. European Journal of Organic Chemistry, 2013, 2013, 5353-5363.	2.4	24
180	Enantioselective hydrogenation of 2â€2-chloroacetophenone with ((R)-Binap)Ru(O2CAr)2 complexes: Influence of carboxylate ligands and solvents. Tetrahedron: Asymmetry, 1996, 7, 525-528.	1.8	23

#	Article	IF	CITATIONS
181	Efficient ruthenium-catalyzed synthesis of [3]dendralenes from 1,3-dienic allylic carbonates. Chemical Communications, 2009, , 6580.	4.1	23
182	New ruthenium metathesis catalysts with chelating indenylidene ligands: synthesis, characterization and reactivity. Dalton Transactions, 2012, 41, 3695.	3.3	23
183	Ruthenium atalysed Synthesis of Functional Conjugated Dienes from Propargylic Carbonates and Silyl Diazo Compounds. Chemistry - A European Journal, 2013, 19, 3292-3296.	3.3	23
184	Transformations of terpenes and terpenoids <i>via</i> carbon–carbon double bond metathesis. Catalysis Science and Technology, 2018, 8, 3989-4004.	4.1	23
185	Site-selective Ru-catalyzed C–H bond alkenylation with biologically relevant isoindolinones: a case of catalyst performance controlled by subtle stereo-electronic effects of the weak directing group. Catalysis Science and Technology, 2019, 9, 4711-4717.	4.1	23
186	(S,S,S)-Perhydroindolic acid: efficient catalyst for direct asymmetric aldol reaction from aromatic aldehydes. Tetrahedron: Asymmetry, 2006, 17, 2187-2190.	1.8	22
187	Silica and zirconia supported olefin metathesis pre-catalysts: Synthesis, catalytic activity and multiple-use in dimethyl carbonate. Journal of Molecular Catalysis A, 2012, 357, 73-80.	4.8	22
188	Palladium(0), copper(I) catalysed synthesis of conjugated alkynyl α-allenols from alkynyl cyclic carbonates and terminal alkynes. Journal of the Chemical Society Chemical Communications, 1994, , 1845-1846.	2.0	21
189	Synthesis of optically active 2-aminotetraline derivatives via enantioselective ruthenium-catalyzed hydrogenation of ene carbamates. Tetrahedron: Asymmetry, 2001, 12, 863-867.	1.8	21
190	Homologation of Monoterpenoids into New Sesquiterpenoidsvia Tandem Isomerisation/Claisen Rearrangement Reactions with Three-Component Ruthenium Catalysts, and Ru(methallyl)2(COD) Revealed by High Throughput Screening Techniques. Advanced Synthesis and Catalysis, 2005, 347, 783-791	4.3	21
191	Ruthenium-Catalyzed Nucleophilic Allylic Substitution Reactions from Î ² -Silylated Allylic Carbonates. Organometallics, 2009, 28, 5173-5182.	2.3	21
192	One-step synthesis of 1-halo-1,3-butadienes via ruthenium-catalysed hydrohalogenative dimerisation of alkynes. Chemical Communications, 2012, 48, 11032.	4.1	21
193	Ruthenium(II)-Catalyzed C–H (Hetero)Arylation of Alkenylic 1, <i>n</i> -Diazines (<i>n</i> = 2, 3, and 4): Scope, Mechanism, and Application in Tandem Hydrogenations. Journal of Organic Chemistry, 2018, 83, 1462-1477.	3.2	21
194	Site-Selective Ruthenium-Catalyzed C–H Bond Arylations with Boronic Acids: Exploiting Isoindolinones as a Weak Directing Group. Journal of Organic Chemistry, 2019, 84, 12893-12903.	3.2	21
195	Formic acid as a hydrogen source for the iridium-catalyzed reductive amination of levulinic acid and 2-formylbenzoic acid. Catalysis Science and Technology, 2019, 9, 4077-4082.	4.1	21
196	Ring-expanded iridium and rhodium <i>N</i> -heterocyclic carbene complexes: a comparative DFT study of heterocycle ring size and metal center diversity. Journal of Coordination Chemistry, 2017, 70, 1270-1284.	2.2	20
197	Synthesis of six-membered cyclic siloxanes via enyne metathesis with a ruthenium catalyst generated in situ. Journal of Molecular Catalysis A, 2002, 190, 9-25.	4.8	19
198	Synthesis and Characterization of Sterically Enlarged Hoveydaâ€Type Olefin Metathesis Catalysts. European Journal of Inorganic Chemistry, 2013, 2013, 54-60.	2.0	19

#	Article	IF	CITATIONS
199	Ruthenium catalyzed ethenolysis of renewable oleonitrile. European Journal of Lipid Science and Technology, 2014, 116, 1583-1589.	1.5	19
200	Palladiumâ€Catalysed Crossâ€Coupling Reactions Controlled by Noncovalent Znâ‹â‹â‹N Interactions. Chem - A European Journal, 2017, 23, 5033-5043.	istry 3.3	19
201	Wood liquefaction with hydrogen or helium in the presence of iron additives. Canadian Journal of Chemical Engineering, 1985, 63, 634-638.	1.7	18
202	Novel Synthesis of Cyclic <i>α</i> -Amino Acid Esters via Ene Reaction and Ruthenium-catalyzed Ring Rearrangement. Synlett, 2001, 2001, 0621-0622.	1.8	18
203	Ruthenium-catalyzed allylation reaction in ionic liquid. Journal of Molecular Catalysis A, 2005, 237, 161-164.	4.8	18
204	Regio- and stereoselective syntheses of piperidine derivatives via ruthenium-catalyzed coupling of propargylic amides and allylic alcohols. Chemical Communications, 2012, 48, 6589.	4.1	18
205	Palladium-acetate catalyst for regioselective direct arylation at C2 of 3-furanyl or 3-thiophenyl acrylates with inhibition of Heck type reaction. Tetrahedron, 2013, 69, 4381-4388.	1.9	18
206	Crossâ€metathesis of fatty acid methyl esters with acrolein: An entry to a variety of bifunctional compounds. European Journal of Lipid Science and Technology, 2015, 117, 209-216.	1.5	18
207	Oneâ€Pot Directing Group Formation/Câ^H Bond Functionalization <i>via</i> Copper(I) and Ruthenium(II) Catalysis. Advanced Synthesis and Catalysis, 2016, 358, 3847-3856.	4.3	18
208	Ruthenium(II)â€(Arene)â€Nâ€Heterocyclic Carbene Complexes: Efficient and Selective Catalysts for the <i>N</i> â€Alkylation of Aromatic Amines with Alcohols. European Journal of Inorganic Chemistry, 2019, 2019, 2598-2606.	2.0	18
209	Acetylene in Catalysis: a One-step Synthesis of Vinylcarbamates with [RuCl2(norbornadiene)]n. Journal of Molecular Catalysis, 1988, 44, 175-178.	1.2	17
210	Enantioselective hydrogenation of isomeric β-acetamido β-alkylacrylates: crucial influence of temperature. Tetrahedron: Asymmetry, 2003, 14, 1973-1977.	1.8	17
211	Cross metathesis of bio-sourced fatty nitriles with acrylonitrile. Monatshefte Für Chemie, 2015, 146, 1107-1113.	1.8	17
212	Synthesis of ruthenium N-heterocyclic carbene complexes and their catalytic activity for β-alkylation of tertiary cyclic amines. Journal of Organometallic Chemistry, 2015, 799-800, 311-315.	1.8	17
213	Ruthenium catalyzed β-C(sp ³)–H functionalization on the â€~privileged' piperazine nucleus. Chemical Communications, 2017, 53, 10448-10451.	4.1	17
214	New Synthesis of Heterocycles via Palladium-Catalyzed Double Carbonylation of Cyclic Alk-1-ynyl Carbonates. Synlett, 1996, 1996, 218-220.	1.8	16
215	Modification of Terpenoid Derivatives with Ruthenium Catalysts Generated in situ. European Journal of Organic Chemistry, 2002, 2002, 3816-3820.	2.4	16
216	New 1,2,4,5-tetrakis-(N-imidazoliniummethyl)benzene and 1,2,4,5-tetrakis-(N-benzimidazoliummethyl)benzene salts as N-heterocyclic tetracarbene precursors: synthesis and involvement in ruthenium-catalyzed allylation reactions. Tetrahedron, 2010, 66, 1346-1351.	1.9	16

#	Article	IF	CITATIONS
217	Interest of the Precatalyst Design for Olefin Metathesis Operating in a Discontinuous Nanofiltration Membrane Reactor. ChemPlusChem, 2013, 78, 728-736.	2.8	16
218	Ruthenium(<scp>ii</scp>) and iridium(<scp>iii</scp>) complexes featuring NHC–sulfonate chelate. Dalton Transactions, 2015, 44, 17467-17472.	3.3	16
219	An Efficient Protocol for Palladium Nâ€Heterocyclic Carbeneâ€Catalysed Suzukiâ€Miyaura Reaction at room temperature. ChemistrySelect, 2017, 2, 5729-5734.	1.5	16
220	2,2′-Dipyridylamines: more than just sister members of the bipyridine family. Applications and achievements in homogeneous catalysis and photoluminescent materials. Dalton Transactions, 2019, 48, 11599-11622.	3.3	16
221	A New Route to Functional α-Enones via Prop-2-ynyl Alcohol Derivatives and Carbonates. Synlett, 1992, 1992, 453-454.	1.8	15
222	Five glycosylated flavonoids from the antibacterial butanolic extract of Pituranthos scoparius. Chemistry of Natural Compounds, 2008, 44, 639-641.	0.8	15
223	Iron salts catalyzed synthesis of β-N-substituted aminoacrylates. Comptes Rendus Chimie, 2008, 11, 612-619.	0.5	15
224	Ruthenium-catalyzed selective N,N-diallylation- and N,N,O-triallylation of free amino acids. Organic and Biomolecular Chemistry, 2009, 7, 3906.	2.8	15
225	Imidazoliumâ€Oxazoline Salts in Rutheniumâ€Catalyzed Allylic Substitution and Cross Metathesis of Formed Branched Isomers. European Journal of Inorganic Chemistry, 2010, 2010, 4752-4756.	2.0	15
226	Sesquiterpene lactones and flavonoids from Centaurea foucauldiana. Chemistry of Natural Compounds, 2012, 48, 510-511.	0.8	15
227	Palladium atalysed Regioselective Direct Arylations of Heteroarenes by Bromobenzamides: Direct Synthesis of Heteroaryl Benzamides. ChemCatChem, 2013, 5, 1956-1963.	3.7	15
228	Ruthenium(<scp>ii</scp>)-catalysed selective C(sp ²)–H bond benzoxylation of biologically appealing <i>N</i> -arylisoindolinones. Organic and Biomolecular Chemistry, 2019, 17, 7517-7525.	2.8	15
229	Nonconventional Supramolecular Self-Assemblies of Zinc(II)-Salphen Building Blocks. European Journal of Inorganic Chemistry, 2016, 2016, 5143-5151.	2.0	14
230	Synthesis of metathesis catalysts with fluorinated unsymmetrical N,N'-diaryl imidazoline-based NHC ligands. Journal of Fluorine Chemistry, 2017, 200, 66-76.	1.7	14
231	Investigation of potential hybrid capacitor property of chelated N-Heterocyclic carbene Ruthenium(II) complex. Journal of Organometallic Chemistry, 2018, 866, 214-222.	1.8	14
232	Identification of thermal degradation products from diuron and iprodione. Journal of Agricultural and Food Chemistry, 1982, 30, 180-182.	5.2	13
233	Novel Two-Step Stereoselective Synthesis of (E)-Enamines and 1-Amino-1,3-dienes from Terminal Alkynes. Synlett, 1997, 1997, 807-808.	1.8	13
234	New [Ru3(CO)12]-Based Catalysts with Imidazolinium Salt, Diimine, or Bis(oxazoline) Ligands and Ruthenium Bis(oxazoline) Complex for Tandem Isomerisation/Claisen Rearrangement of Dienyl Ethersâ [^] X-ray Structure of [RuCl{(R,R)-bis(isopropyloxazoline)}(p-cymene)]BF4. European Journal of Inorganic Chemistry, 2003, 2003, 4055-4064.	2.0	13

#	Article	IF	CITATIONS
235	Synthesis of CF3-Containing 1,2,3,4-Tetrahydroisoquinoline-3-Phosphonates via Regioselective Ruthenium-Catalyzed Co-cyclotrimerization of 1,7-AzaÂdiynes. Synlett, 2013, 24, 1517-1522.	1.8	13
236	Thermal degradation of tri-n-butyl phosphate. Journal of Analytical and Applied Pyrolysis, 1981, 3, 71-81.	5.5	12
237	A phenylethanoid glycoside and flavonoids from Phlomis crinita (Cav.) (Lamiaceae). Biochemical Systematics and Ecology, 2005, 33, 813-816.	1.3	12
238	Diterpenes and sterols from the roots of Salvia verbenaca subsp. clandestina. Chemistry of Natural Compounds, 2008, 44, 824-825.	0.8	12
239	Reactivity of C–H bonds of polychlorobenzenes for palladium-catalysed direct arylations with aryl bromides. Catalysis Science and Technology, 2014, 4, 352-360.	4.1	12
240	Silver atalyzed Hydrogenation of Ketones under Mild Conditions. Advanced Synthesis and Catalysis, 2019, 361, 786-790.	4.3	12
241	Utilization of an industrial feedstock without separation. Green Chemistry, 1999, 1, 183-185.	9.0	11
242	Synthesis of New Perhydroindole Derivatives and Their Evaluation in Ruthenium atalyzed Hydrogen Transfer Reduction. European Journal of Organic Chemistry, 2008, 2008, 934-940.	2.4	11
243	Alkene Metathesis Catalysis: A Key for Transformations of Unsaturated Plant Oils and Renewable Derivatives. Oil and Gas Science and Technology, 2016, 71, 19.	1.4	11
244	Transformations of bioâ€sourced 4â€hydroxyphenylpropanoids based on olefin metathesis. ChemCatChem, 2020, 12, 5000-5021.	3.7	11
245	New sesquiterpene lactone and other constituents from Centaurea sulphurea (Asteraceae). Natural Product Communications, 2010, 5, 849-50.	0.5	11
246	Synthesis of Functional Oxazolidin-2-ones and Oxadiazin-2-ones in Two Steps from CO2 via Cyclic α-Methylene Carbonates. Synlett, 1993, 1993, 423-424.	1.8	10
247	Stereoselective synthesis of \hat{I}^2 -ketoesters from prop-2-yn-1-ols. Tetrahedron, 1997, 53, 9241-9252.	1.9	10
248	Nucleophilic Additions to Alkynes and Reactions via Vinylidene Intermediates. , 2005, , 189-217.		10
249	Volatile Oil Constituents ofTeucrium atratumPomel from Algeria. Journal of Essential Oil Research, 2006, 18, 175-177.	2.7	10
250	Synthesis of stereo-defined 1,1,4,4-tetrahalo- and 1,1,4,4-mixed-tetrahalo-1,3-butadienes. Tetrahedron Letters, 2008, 49, 624-627.	1.4	10
251	Ruthenium-Catalyzed Cyclotrimerization of 1,6- and 1,7-Azadiynes: New Access to Fluorinated Bicyclic Amino Acids. Synlett, 2008, 2008, 578-582.	1.8	10
252	Hydride-Induced Novel Cyclization of Dienedinitriles Leading to Multifunctionalized Cyclopentadienes. Organic Letters, 2009, 11, 4458-4461.	4.6	10

#	Article	IF	CITATIONS
253	Stepwise catalytic transformations of renewable feedstock arising from plant oils. European Journal of Lipid Science and Technology, 2013, 115, 490-500.	1.5	10
254	Ruthenium(II) and Iridium(III) Complexes Bearing Phosphinepyridonate and Phosphinequinolinolate Chelates. European Journal of Inorganic Chemistry, 2015, 2015, 4312-4317.	2.0	10
255	Olefin metathesis transformations in thermomorphic multicomponent solvent systems. Catalysis Communications, 2015, 63, 31-34.	3.3	10
256	Acceptorless and Baseâ€Free Dehydrogenation of Alcohols Mediated by a Dipyridylamineâ€iridium(III) Catalyst. European Journal of Organic Chemistry, 2020, 2020, 4326-4330.	2.4	10
257	Ruthenium Catalysts for Controlled Mono―and Bisâ€Allylation of Active Methylene Compounds with Aliphatic Allylic Substrates. Advanced Synthesis and Catalysis, 2009, 351, 2724-2728.	4.3	9
258	Preparation of Sugar βâ€Amino Acid Derivatives with Cyclic Structures by Ring losing Metathesis. European Journal of Organic Chemistry, 2010, 2010, 6092-6096.	2.4	9
259	Flavonoids from Centaurea sulphurea. Chemistry of Natural Compounds, 2011, 46, 966-967.	0.8	9
260	Merging Transition-Metal Catalysis with Phthalimides: A New Entry to Useful Building Blocks. Synthesis, 2018, 50, 4216-4228.	2.3	9
261	Base-controlled product switch in the ruthenium-catalyzed protodecarbonylation of phthalimides: a mechanistic study. Catalysis Science and Technology, 2020, 10, 180-186.	4.1	9
262	Allenes and Cumulenes. , 2005, , 1019-1081.		8
263	Flavonoid glycosides from Reseda villosa (Resedaceae). Biochemical Systematics and Ecology, 2006, 34, 777-779.	1.3	8
264	Ruthenium Complexes Bearing Bulky Pentasubstituted Cyclopentadienyl Ligands and Evaluation of [Ru(η5 5Me4R)(MeCN)3][PF6] Precatalysts in Nucleophilic Allylic Substitution Reactions. European Journal of Inorganic Chemistry, 2008, 2008, 3212-3217.	2.0	8
265	Dendralenes Preparation via Ene–Yne Crossâ€Metathesis from Inâ€Situ Generated 1,3â€Enynes. ChemCatCho 2011, 3, 1876-1879.	em 3.7	8
266	Palladium-Catalysed Direct Heteroarylations of Heteroaromatics Using Esters as Blocking Groups at C2 of Bromofuran and Bromothiophene Derivatives: AÂOne-Step Access to Biheteroaryls. Synlett, 2012, 23, 2077-2082.	1.8	8
267	Synthesis and Applications in Catalysis of Metal Complexes with Chelating Phosphinosulfonate Ligands. Advances in Organometallic Chemistry, 2014, , 159-218.	1.0	8
268	Efficient Domino Hydroformylation/Benzoin Condensation: Highly Selective Synthesis of αâ€Hydroxy Ketones. Chemistry - A European Journal, 2015, 21, 18033-18037.	3.3	8
269	Acetals from primary alcohols with the use of tridentate proton responsive phosphinepyridonate iridium catalysts. RSC Advances, 2016, 6, 100554-100558.	3.6	8
270	Novel olefin metathetis catalysts with fluorinated N-alkyl-N´-arylimidazolin-2-ylidene ligands. Russian Chemical Bulletin, 2017, 66, 1601-1606.	1.5	8

#	Article	IF	CITATIONS
271	Cationic versus anionic Pt complex: The performance analysis of a hybrid-capacitor, DFT calculation and electrochemical properties. Polyhedron, 2019, 157, 434-441.	2.2	8
272	Thermal [2+2] Cycloaddition of CF3-Substituted Allenynes: Access to Novel Cyclobutene-Containing α-Amino Acids. Synlett, 2011, 2011, 2321-2324.	1.8	7
273	10 Catalytic conversion of biosourced raw materials: homogeneous catalysis. , 2012, , 231-262.		7
274	Cross metathesis of unsaturated epoxides for the synthesis of polyfunctional building blocks. Beilstein Journal of Organic Chemistry, 2015, 11, 1876-1880.	2.2	7
275	New fluorinated catalysts for olefin metathesis. Mendeleev Communications, 2016, 26, 474-476.	1.6	7
276	First elaboration of an olefin metathesis catalytic membrane by grafting a Hoveyda–Grubbs precatalyst on zirconia membranes. Comptes Rendus Chimie, 2017, 20, 952-966.	0.5	7
277	Syntheses and characterization of molecular weight enlarged olefin metathesis pre-catalysts. Comptes Rendus Chimie, 2017, 20, 717-723.	0.5	7
278	Ene-yne Cross-Metathesis for the Preparation of 2,3-Diaryl-1,3-dienes. Catalysts, 2017, 7, 365.	3.5	7
279	Investigation of hybridâ€capacitor properties of ruthenium complexes. International Journal of Energy Research, 2019, 43, 6840.	4.5	7
280	Tandem hydroformylation/isomerization/hydrogenation of bio-derived 1-arylbutadienes for the regioselective synthesis of branched aldehydes. Applied Catalysis A: General, 2020, 598, 117583.	4.3	7
281	Thermal degradation of chlorophenoxy acid herbicides. Journal of Agricultural and Food Chemistry, 1988, 36, 649-653.	5.2	6
282	Ruthenium-catalyzed tandem allylic substitution/isomerization: a direct route to propiophenones from cinnamyl chloride derivatives. New Journal of Chemistry, 2008, 32, 929.	2.8	6
283	Ring Closing and Macrocyclization of βâ€Dipeptides by Olefin Metathesis. European Journal of Organic Chemistry, 2013, 2013, 6433-6442.	2.4	6
284	Access to Functionalized α-Trifluoromethyl-α-aminophosphonates via Intermolecular Ene–Yne Metathesis. Synlett, 2014, 25, 2624-2628.	1.8	6
285	Synthesis and conformational studies of α/β ^{2,3} -peptides derived from alternating β ^{2,3} -amino acids and <scp> </scp> -Ala repeats. New Journal of Chemistry, 2015, 39, 3295-3309.	2.8	6
286	Carbon-rich Organoruthenium and Selective Catalytic Transformations of Alkynes. , 1997, , 1-20.		6
287	Palladium-Catalyzed Synthesis of Functional Tetralinsvia Benzylic Activation. Advanced Synthesis and Catalysis, 2007, 349, 841-845.	4.3	5
288	Two coumarins and a thienylbutylamide from Anacyclus cyrtolepioides from the Algerian Septentrional Sahara. Chemistry of Natural Compounds, 2007, 43, 612-613.	0.8	5

#	Article	IF	CITATIONS
289	Hydrogenation of \hat{I}^2 -N-substituted enaminoesters in the presence of ruthenium catalysts. Journal of Organometallic Chemistry, 2010, 695, 870-874.	1.8	5
290	SYNTHESIS OF NOVEL ANTIBACTERIAL METAL FREE AND METALLOPHTHALOCYANINES APPENDING WITH FOUR PERIPHERAL COUMARIN DERIVATIVES AND THEIR SEPARATION OF STRUCTURAL ISOMERS. Heterocycles, 2013, 87, 2283.	0.7	5
291	Alkene Metathesis for Transformations of Renewables. Topics in Organometallic Chemistry, 2018, , 77-102.	0.7	5
292	Direct Access to (±)â€10â€Desbromoarborescidine A from Tryptamine and Pentaneâ€1,5â€diol. Asian Journal of Organic Chemistry, 2020, 9, 910-913.	2.7	5
293	Ruthenium-catalysed oxidative coupling of vinyl derivatives and application in tandem hydrogenation. Catalysis Science and Technology, 2021, 11, 5772-5776.	4.1	5
294	Cross metathesis of (-)-β-pinene, (-)-limonene and terpenoids derived from limonene with internal olefins. Applied Catalysis A: General, 2021, 623, 118284.	4.3	5
295	Ruthenium-catalyzed Regioselective Synthesis of Dienol Diesters. Journal of Chemical Research Synopses, 1999, , 249-249.	0.3	4
296	Direct Preparation of N-(Alk-1-en-1-yl)carbamates from Cyclic Ketones and Unsubstituted Carbamates. Collection of Czechoslovak Chemical Communications, 2002, 67, 235-244.	1.0	4
297	Comparative Phytochemical Study of the Butanolic Extracts of Two Algerian Phlomis Species. Chemistry of Natural Compounds, 2004, 40, 188-189.	0.8	4
298	A New Access to the 6,8-Dioxabicyclo[3.2.1]octane Ring System Using a Three-Component Reaction: Enantioselective Synthesis of (+)-iso-exo-Brevicomin. Synlett, 2010, 2010, 207-210.	1.8	4
299	RTILs in Catalytic Olefin Metathesis Reactions. Topics in Organometallic Chemistry, 2013, , 287-305.	0.7	4
300	sp3–sp3 carbon–carbon bond formation using 2-alkylazoles and a bromoacrylate as the reaction partners. Tetrahedron Letters, 2015, 56, 4354-4358.	1.4	4
301	Functionalization of (-)-β-pinene and (-)-limonene via cross metathesis with symmetrical internal olefins. Catalysis Communications, 2020, 135, 105893.	3.3	4
302	Fluorine-containing ruthenium-based olefin metathesis catalysts. Russian Chemical Reviews, 2021, 90, 419-450.	6.5	4
303	Thermal behavior of some glycol ethers. Industrial & Engineering Chemistry Product Research and Development, 1982, 21, 74-76.	0.5	3
304	Thermal degradation of oxadiazon. Journal of Agricultural and Food Chemistry, 1982, 30, 772-775.	5.2	3
305	Ruthenium- and palladium-catalyzed synthesis of polyfunctional 1,3-dienes. Russian Chemical Bulletin, 1998, 47, 913-917.	1.5	3
306	Ruthenium-Catalyzed Transformations of Cyclopropylethynes. Synthesis, 2007, 2007, 3574-3588.	2.3	3

#	Article	IF	CITATIONS
307	Hydrogenation of β-N-Substituted and β-N,N-Disubstituted Enamino Esters in the Presence of Iridium(I) Catalyst. Synthesis, 2009, 2009, 2627-2633.	2.3	3
308	[Cp*Ru]-catalyzed selective coupling/hydrogenation. Catalysis Science and Technology, 2015, 5, 1650-1657.	4.1	3
309	Ruthenium Catalyzed Regioselective βâ€C(sp 3)â^'H Functionalization of N â€Alkyl―N′ ―p– nitrophenyl Substituted Piperazines using Aldehydes as Alkylating Agents. Advanced Synthesis and Catalysis, 2021, 363, 453-458.	4.3	3
310	Thermal degradation of amphetamine sulphate. Journal of Analytical and Applied Pyrolysis, 1985, 7, 307-313.	5.5	2
311	Chemical Influence of the Oils Obtained by Hydropyrolysis of Wood. ACS Symposium Series, 1988, , 220-227.	0.5	2
312	Thermal degradation of dibutyltin oxide. Journal of Analytical and Applied Pyrolysis, 1989, 16, 183-190.	5.5	2
313	Tertiary 3-Aminopropenones and 3-Aminopropenoates: Their Preparation, with and without Lewis Acids, from Secondary Amines and 1,3-Diketo Compounds. Synthesis, 2007, 2007, 731-738.	2.3	2
314	Catalytic Cycloisomerization of Enynes Involving Various Activation Processes. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 375-394.	0.1	2
315	Mild pyrolysis of phosalone. Journal of Analytical and Applied Pyrolysis, 1986, 10, 107-116.	5.5	1
316	Anti-Markovnikov Additions ofO-,N-,P-Nucleophiles to Triple Bonds with Ruthenium Catalysts. , 0, , 313-332.		1
317	Title is missing!. Advanced Synthesis and Catalysis, 2001, 343, 331-334.	4.3	1
318	Ruthenium-Catalyzed Enantioselective Hydrogenation of Trisubstituted Enamides Derived from 2-Tetralone and 3-Chromanone: Influence of Substitution on the Amide Arm and the Aromatic Ring ChemInform, 2003, 34, no.	0.0	0
319	η6-Mesityl,η1-Imidazolinylidene—Carbene—Ruthenium(II) Complexes: Catalytic Activity of Their Allenylidene Derivatives in Alkene Metathesis and Cycloisomerization Reactions ChemInform, 2003, 34, no.	0.0	0
320	Enantioselective Hydrogenation of \hat{l}^2 -Acylamino Acrylates Catalyzed by Rhodium(I)-Monophosphite Complexes ChemInform, 2004, 35, no.	0.0	0
321	Allenylidene-Ruthenium Complexes as Versatile Precatalysts for Alkene Metathesis Reactions. ChemInform, 2004, 35, no.	0.0	0
322	Chiral Monodentate Phosphorus Ligands for Rhodium-Catalyzed Asymmetric Hydrogenation. ChemInform, 2004, 35, no.	0.0	0
323	First Enantioselective Allylic Etherification with Phenols Catalyzed by Chiral Ruthenium Bisoxazoline Complexes ChemInform, 2005, 36, no.	0.0	0
324	Ruthenium Vinylidenes and Allenylidenes in Catalysis. ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
325	Concomitant Monoreduction and Hydrogenation of Unsaturated Cyclic Imides to Lactams Catalyzed by Ruthenium Compounds ChemInform, 2005, 36, no.	0.0	0
326	Electrophilic Activation and Cycloisomerization of Enynes: A New Route to Functional Cyclopropanes. ChemInform, 2005, 36, no.	0.0	0
327	Direct Preparation of N-(Alk-1-en-1-yl)carbamates from Cyclic Ketones and Unsubstituted Carbamates. ChemInform, 2010, 33, 99-99.	0.0	0
328	Synthesis of Bioactives Coumarin Derivatives, Phthalocyanines and Terminal Conjugated Dienes via a Ruthenium Catalyzed Cross-Metathesis: Application to Renewable Resources. Materials Science Forum, 0, 842, 1-45.	0.3	0
329	Pierre Dixneuf: A Pioneering Career in Organometallic Chemistry Highlighting Ruthenium as a Star Metal in Homogeneous Catalysis. Organometallics, 2021, 40, 1551-1554.	2.3	0
330	Ring Closing Versus Cyclic Isomerization of 1,6-Dienes by Ruthenium Allenylidene Complexes. , 2003, , 285-293.		0
331	Catalytic Incorporation of CO2 for the Synthesis of Organic Compounds. , 1990, , 65-77.		0