Emanuel A Fronhofer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3458249/publications.pdf

Version: 2024-02-01

50 papers 2,867 citations

257450 24 h-index 214800 47 g-index

82 all docs

82 does citations

times ranked

82

3410 citing authors

#	Article	IF	CITATIONS
1	Selection on growth rate and local adaptation drive genomic adaptation during experimental range expansions in the protist $\langle i \rangle$ Tetrahymena thermophila $\langle i \rangle$. Journal of Animal Ecology, 2022, 91, 1088-1103.	2.8	5
2	Spatial autocorrelation of local patch extinctions drives recovery dynamics in metacommunities. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220543.	2.6	3
3	Scaling up our understanding of tipping points. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	12
4	Host–parasite dynamics set the ecological theatre for the evolution of state―and contextâ€dependent dispersal in hosts. Oikos, 2021, 130, 121-132.	2.7	8
5	An evolutionary tradeâ€off between parasite virulence and dispersal at experimental invasion fronts. Ecology Letters, 2021, 24, 739-750.	6.4	13
6	Parasitism and host dispersal plasticity in an aquatic model system. Journal of Evolutionary Biology, 2021, 34, 1316-1325.	1.7	8
7	Dispersal behaviour and riverine network connectivity shape the genetic diversity of freshwater amphipod metapopulations. Molecular Ecology, 2021, 30, 6551-6565.	3.9	9
8	Nonlinear Effects of Intraspecific Competition Alter Landscape-Wide Scaling Up of Ecosystem Function. American Naturalist, 2020, 195, 432-444.	2.1	12
9	Metaecosystem dynamics drive community composition in experimental, multiâ€layered spatial networks. Oikos, 2020, 129, 402-412.	2.7	26
10	Gene swamping alters evolution during range expansions in the protist <i>Tetrahymena thermophila</i> . Biology Letters, 2020, 16, 20200244.	2.3	14
11	Species multidimensional effects explain idiosyncratic responses of communities to environmental change. Nature Ecology and Evolution, 2020, 4, 1036-1043.	7.8	32
12	Generation and application of river network analogues for use in ecology and evolution. Ecology and Evolution, 2020, 10, 7537-7550.	1.9	41
13	Evolution in interacting species alters predator life-history traits, behaviour and morphology in experimental microbial communities. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200652.	2.6	9
14	Evolution under pH stress and high population densities leads to increased densityâ€dependent fitness in the protist <i>Tetrahymena thermophila</i> Evolution; International Journal of Organic Evolution, 2020, 74, 573-586.	2.3	9
15	Assessing different components of diversity across a river network using eDNA. Environmental DNA, 2019, 1, 290-301.	5.8	64
16	The conflict between adaptation and dispersal for maintaining biodiversity in changing environments. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21061-21067.	7.1	65
17	Dispersal syndromes can impact ecosystem functioning in spatially structured freshwater populations. Biology Letters, 2019, 15, 20180865.	2.3	28
18	Ecoâ€evolutionary feedbacksâ€"Theoretical models and perspectives. Functional Ecology, 2019, 33, 13-30.	3.6	137

#	Article	IF	CITATIONS
19	Dispersal in dendritic networks: Ecological consequences on the spatial distribution of population densities. Freshwater Biology, 2018, 63, 22-32.	2.4	66
20	Kin competition accelerates experimental range expansion in an arthropod herbivore. Ecology Letters, 2018, 21, 225-234.	6.4	46
21	Genetics of dispersal. Biological Reviews, 2018, 93, 574-599.	10.4	182
22	Disturbance reverses classic biodiversity predictions in river-like landscapes. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182441.	2.6	22
23	Eusociality outcompetes egalitarian and solitary strategies when resources are limited and reproduction is costly. Ecology and Evolution, 2018, 8, 12953-12964.	1.9	14
24	Bottom-up and top-down control of dispersal across major organismal groups. Nature Ecology and Evolution, 2018, 2, 1859-1863.	7.8	80
25	Biodiversity increases and decreases ecosystem stability. Nature, 2018, 563, 109-112.	27.8	261
26	Classical metapopulation dynamics and ecoâ€evolutionary feedbacks in dendritic networks. Ecography, 2017, 40, 1455-1466.	4.5	39
27	Evolution of densityâ€dependent movement during experimental range expansions. Journal of Evolutionary Biology, 2017, 30, 2165-2176.	1.7	28
28	Upstream trophic structure modulates downstream community dynamics via resource subsidies. Ecology and Evolution, 2017, 7, 5724-5731.	1.9	12
29	Ecoâ€evolutionary dynamics in fragmented landscapes. Ecography, 2017, 40, 9-25.	4.5	101
30	Information use shapes the dynamics of range expansions into environmental gradients. Global Ecology and Biogeography, 2017, 26, 400-411.	5.8	47
31	Dynamic species classification of microorganisms across time, abiotic and biotic environments—A sliding window approach. PLoS ONE, 2017, 12, e0176682.	2.5	21
32	The downward spiral: ecoâ€evolutionary feedback loops lead to the emergence of  elastic' ranges. Ecography, 2016, 39, 261-269.	4.5	8
33	Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nature Communications, 2016, 7, 12544.	12.8	415
34	Conditionâ€dependent movement and dispersal in experimental metacommunities. Ecology Letters, 2015, 18, 954-963.	6.4	58
35	Dendritic network structure and dispersal affect temporal dynamics of diversity and species persistence. Oikos, 2015, 124, 908-916.	2.7	67
36	Eco-evolutionary feedbacks during experimental range expansions. Nature Communications, 2015, 6, 6844.	12.8	136

#	Article	IF	Citations
37	Densityâ€dependent movement and the consequences of the Allee effect in the model organism <i>Tetrahymena</i> . Journal of Animal Ecology, 2015, 84, 712-722.	2.8	40
38	Landscape configuration is a major determinant of home range size variation. Ecosphere, 2015, 6, 1-12.	2.2	29
39	Big answers from small worlds: a user's guide for protist microcosms as a model system in ecology and evolution. Methods in Ecology and Evolution, 2015, 6, 218-231.	5.2	157
40	Evolution of dispersal distance: Maternal investment leads to bimodal dispersal kernels. Journal of Theoretical Biology, 2015, 365, 270-279.	1.7	17
41	Dispersal, evolution and range dynamics – a synthesis. Oikos, 2014, 123, 3-4.	2.7	7
42	SPATIALLY CORRELATED EXTINCTIONS SELECT FOR LESS EMIGRATION BUT LARGER DISPERSAL DISTANCES IN THE SPIDER MITE THE SPIDER MITE 1014, 68, 1838-1844.	2.3	46
43	Where am I and why? Synthesizing range biology and the ecoâ€evolutionary dynamics of dispersal. Oikos, 2014, 123, 5-22.	2.7	158
44	Picky hitchâ€hikers: vector choice leads to directed dispersal and fatâ€tailed kernels in a passively dispersing mite. Oikos, 2013, 122, 1254-1264.	2.7	24
45	Kin Competition as a Major Driving Force for Invasions. American Naturalist, 2013, 181, 700-706.	2.1	56
46	From random walks to informed movement. Oikos, 2013, 122, 857-866.	2.7	63
47	Why are metapopulations so rare?. Ecology, 2012, 93, 1967-1978.	3.2	7 5
48	ASSORTATIVE MATING COUNTERACTS THE EVOLUTION OF DISPERSAL POLYMORPHISMS. Evolution; International Journal of Organic Evolution, 2011, 65, 2461-2469.	2.3	23
49	Risk sensitivity revisited: from individuals to populations. Animal Behaviour, 2011, 82, 875-883.	1.9	4
50	The Mexican mouse opossum (Marmosa mexicana) as a flower visitor at a neotropical palm. Mammalian Biology, 2009, 74, 76-80.	1.5	9