Kazuyoshi Nakada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3458174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Benefits of Low Electron-Affinity Material as the N-Type Layer for Cu(In,Ga)S2 Solar Cell. Energies, 2022, 15, 4.	3.1	2
2	Cathode luminescence analysis of Cu(In,Ga)Se2 solar cells treated with thiourea solution. Japanese Journal of Applied Physics, 2021, 60, 031001.	1.5	2
3	Effect of Superimposed DC Power on the Properties of Intrinsic Hydrogenated Amorphous Silicon Passivation Layer Deposited by RF Facing Target Sputtering. IEEE Journal of Photovoltaics, 2020, 10, 927-934.	2.5	4
4	Impact of bilayer structures on the surface passivation quality of highâ€rateâ€sputtered hydrogenated amorphous silicon for silicon heterojunction solar cells. Progress in Photovoltaics: Research and Applications, 2020, 28, 971-976.	8.1	4
5	Enhancement of Cu(In,Ga)Se ₂ solar cells efficiency by controlling the formation of Cu-deficient layer. Japanese Journal of Applied Physics, 2020, 59, 041003.	1.5	15
6	Improvement of Cu(In,Ca)Se ₂ solar cell performance by thiourea treatment. Japanese Journal of Applied Physics, 2020, 59, 031005.	1.5	5
7	Correlation between carrier recombination and valence band offset effect of graded Cu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 2019, 201, 110070.	6.2	27
8	Examination of a Cu-Deficient Layer on Cu(In, Ga)Se ₂ Films Fabricated by a Three-Stage Process for Highly Efficient Solar Cells. ACS Applied Energy Materials, 2019, 2, 5103-5108.	5.1	13
9	Improvement of the efficiency of Cu ₂ ZnSn(S,Se) ₄ solar cells fabricated from nanoparticles by control of sintering heating rate. Japanese Journal of Applied Physics, 2019, 58, 051002.	1.5	3
10	Accurate control and characterization of Cu depletion layer for highly efficient Cu(In,Ga)Se ₂ solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 171-178.	8.1	18
11	Effect of RF power on the properties of intrinsic hydrogenated amorphous silicon passivation layer deposited by facing target sputtering. Applied Physics Express, 2018, 11, 031301.	2.4	12
12	Effect of an additional Cu-deficient layer deposition on alkali treated Cu(In,Ga)Se2 solar cells deposited at low temperature. Solar Energy Materials and Solar Cells, 2018, 184, 67-72.	6.2	9
13	Effect of Cuâ€deficient layer formation in Cu(In,Ga)Se ₂ solarâ€cell performance. Progress in Photovoltaics: Research and Applications, 2018, 26, 291-302.	8.1	39
14	Silicon Heterojunction Solar Cells with Cu <inf>2</inf> O:N as p-type Layer. , 2018, , .		2
15	Silicon Heterojunction Solar Cell with Intrinsic Hydrogenated Amorphous Silicon Layer Deposited by Facing Target Sputtering. , 2018, , .		1
16	Control of Donor Concentration in <italic>n</italic> -Type Buffer Layer for High-Efficiency Cu(In,Ga)Se ₂ Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 1841-1846.	2.5	8
17	Characterization of Interface Between Accurately Controlled Cu-Deficient Layer and Cu(In,Ga)Se2 Absorber for Cu(In,Ga)Se2 Solar Cells. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800129.	2.4	11
18	Effect of annealing after CdS layer deposition on Cu2ZnSn(S,Se)4 solar cells fabricated from nanoparticles. Japanese Journal of Applied Physics, 2018, 57, 08RC06.	1.5	1

Kazuyoshi Nakada

#	Article	IF	CITATIONS
19	Characterization of Interface Between Accurately Controlled Cuâ€Deficient Layer and Cu(In,Ga)Se ₂ Absorber for Cu(In,Ga)Se ₂ Solar Cells (Phys. Status Solidi RRL) Tj ETQq1	1 Q.7 843	14 rgBT /Ove
20	Crystal growth mechanism of Cu ₂ ZnSn(S,Se) ₄ thin films fabricated from nanoparticles. Japanese Journal of Applied Physics, 2017, 56, 035502.	1.5	9
21	Control of valence band offset of Cu(In,Ga)Se ₂ solar cells with single-graded band profile. Japanese Journal of Applied Physics, 2017, 56, 062301.	1.5	14
22	Effects of epitaxial growth on the optimum condition of intrinsic amorphous silicon oxide buffer layers for silicon heterojunction solar cells. Thin Solid Films, 2017, 628, 214-220.	1.8	3
23	Impact of roll-over-shaped current–voltage characteristics and device properties of Ag(In,Ga)Se ₂ solar cells. Japanese Journal of Applied Physics, 2017, 56, 012302.	1.5	7
24	Fabrication and characterization of sputtered Cu2O:N/c-Si heterojunction diode. Applied Physics Letters, 2017, 111, .	3.3	18
25	Conduction band offset engineering in wide-bandgap Ag(In,Ga)Se ₂ solar cells by hybrid buffer layer. Japanese Journal of Applied Physics, 2017, 56, 08MC09.	1.5	16
26	Efficiency enhancement of flexible Cu(In,Ga)Se ₂ solar cells deposited on polyimide-coated soda lime glass substrate by alkali treatment. Japanese Journal of Applied Physics, 2017, 56, 08MC15.	1.5	6
27	Temperature-dependent minority carrier lifetime of crystalline silicon wafers passivated by high quality amorphous silicon oxide. Japanese Journal of Applied Physics, 2016, 55, 04ES04.	1.5	2
28	Improvement of Cu(In, Ga)Se <inf>2</inf> photovoltaic performance by adding Cu-poor compounds Cu(In, Ga) <inf>3</inf> Se <inf>5</inf> at Cu(In, Ga)Se <inf>2</inf> /CdS interface. , 2016, , .		1
29	Interfacial quality improvement of Cu(In,Ga)Se ₂ thin film solar cells by Cu-depletion layer formation. Applied Physics Express, 2016, 9, 092301.	2.4	23
30	Highâ€performance aâ€Si _{1–<i>x</i>} O <i>_x</i> :H/câ€Si heterojunction solar cells realized by the aâ€Si:H/aâ€Si _{1–<i>x</i>} O <i>_x</i> :H stack buffer layer. Physica Status Solidi - Rapid Research Letters, 2015, 9, 225-229.	2.4	13
31	Silicon heterojunction solar cells with high surface passivation quality realized using amorphous silicon oxide films with epitaxial phase. Japanese Journal of Applied Physics, 2015, 54, 052303.	1.5	9
32	Application of n-type microcrystalline silicon oxide as back reflector of crystalline silicon heterojunction solar cells. Japanese Journal of Applied Physics, 2015, 54, 082301.	1.5	9
33	Amorphous silicon oxide passivation films for silicon heterojunction solar cells studied by hydrogen evolution. Japanese Journal of Applied Physics, 2014, 53, 04ER13.	1.5	28