César Viseras Iborra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3458052/publications.pdf

Version: 2024-02-01

117625 110387 4,756 129 34 64 citations g-index h-index papers 4247 130 130 130 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Use of clays as drug delivery systems: Possibilities and limitations. Applied Clay Science, 2007, 36, 22-36.	5.2	567
2	Current challenges in clay minerals for drug delivery. Applied Clay Science, 2010, 48, 291-295.	5.2	305
3	Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 2007, 36, 51-63.	5.2	250
4	Uses of clay minerals in semisolid health care and therapeutic products. Applied Clay Science, 2007, 36, 37-50.	5.2	219
5	Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Applied Clay Science, 2017, 135, 9-15.	5.2	185
6	Biopolymer–clay nanocomposites for controlled drug delivery. Materials Science and Technology, 2008, 24, 1020-1026.	1.6	142
7	Kaolinite in pharmaceutics and biomedicine. International Journal of Pharmaceutics, 2017, 533, 34-48.	5.2	130
8	Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomaterialia, 2017, 57, 216-224.	8.3	125
9	In vitro biocompatibility and mucoadhesion of montmorillonite chitosan nanocomposite: A new drug delivery. Applied Clay Science, 2012, 55, 131-137.	5.2	118
10	Pharmaceutical applications of some spanish clays (sepiolite, palygorskite, bentonite): some preformulation studies. Applied Clay Science, 1999, 14, 69-82.	5.2	109
11	Montmorillonite–chitosan–silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: In vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydrate Polymers, 2014, 102, 970-977.	10.2	96
12	Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids and Surfaces B: Biointerfaces, 2014, 113, 152-157.	5.0	86
13	Equilibrium and kinetics of 5-aminosalicylic acid adsorption by halloysite. Microporous and Mesoporous Materials, 2008, 108, 112-116.	4.4	80
14	Release kinetics of 5-aminosalicylic acid from halloysite. Colloids and Surfaces B: Biointerfaces, 2013, 105, 75-80.	5.0	67
15	Chitosan–silicate biocomposites to be used in modified drug release of 5-aminosalicylic acid (5-ASA). Applied Clay Science, 2010, 50, 106-111.	5.2	61
16	Bioadsorbent beads prepared from activated biomass/alginate for enhanced removal of cationic dye from water medium: Kinetics, equilibrium and thermodynamic studies. Journal of Molecular Liquids, 2018, 256, 533-540.	4.9	61
17	Clay Minerals in Skin Drug Delivery. Clays and Clay Minerals, 2019, 67, 59-71.	1.3	60
18	Biopharmaceutical improvement of praziquantel by interaction with montmorillonite and sepiolite. Applied Clay Science, 2018, 160, 173-179.	5.2	53

#	Article	IF	Citations
19	Effect of acid treatment on the structure of sepiolite. Clay Minerals, 2003, 38, 353-360.	0.6	51
20	Pharmaceutical and Cosmetic Applications of Clays. Interface Science and Technology, 2004, 1, 267-289.	3.3	49
21	Adsorption and characterization of palygorskite-isoniazid nanohybrids. Applied Clay Science, 2018, 160, 180-185.	5.2	49
22	Pharmaceutical grade phyllosilicate dispersions: the influence of shear history on floc structure. International Journal of Pharmaceutics, 1999, 182, 7-20.	5.2	48
23	Carvacrol/clay hybrids loaded into in situ gelling films. International Journal of Pharmaceutics, 2017, 531, 676-688.	5.2	47
24	Characterisation of northern Patagonian bentonites for pharmaceutical uses. Applied Clay Science, 2006, 31, 272-281.	5.2	46
25	Characterization of Iranian bentonites to be used as pharmaceutical materials. Applied Clay Science, 2015, 116-117, 193-201.	5.2	46
26	Rheological and thermal characterization of peloids made of selected Portuguese geological materials. Applied Clay Science, 2011, 52, 219-227.	5.2	45
27	Assessment of halloysite nanotubes as vehicles of isoniazid. Colloids and Surfaces B: Biointerfaces, 2017, 160, 337-344.	5.0	45
28	Folk pharmaceutical formulations in western Mediterranean: Identification and safety of clays used in pelotherapy. Journal of Ethnopharmacology, 2014, 155, 810-814.	4.1	40
29	Suitability of natural sulphur-rich muds from Copahue (Argentina) for use as semisolid health care products. Applied Clay Science, 2010, 49, 205-212.	5.2	39
30	Influence of dispersion conditions of two pharmaceutical grade clays on their interaction with some tetracyclines. Applied Clay Science, 2005, 30, 79-86.	5.2	38
31	Supramolecular structure of 5-aminosalycilic acid/halloysite composites. Journal of Microencapsulation, 2009, 26, 279-286.	2.8	37
32	Intestinal permeability of oxytetracycline from chitosan-montmorillonite nanocomposites. Colloids and Surfaces B: Biointerfaces, 2014, 117, 441-448.	5.0	37
33	<p>Montmorillonite-norfloxacin nanocomposite intended for healing of infected wounds</p> . International Journal of Nanomedicine, 2019, Volume 14, 5051-5060.	6.7	37
34	Hybrid systems based on "drug – in cyclodextrin – in nanoclays―for improving oxaprozin dissolution properties. International Journal of Pharmaceutics, 2016, 509, 8-15.	5.2	36
35	Molecular and crystal structure of praziquantel. Spectroscopic properties and crystal polymorphism. European Journal of Pharmaceutical Sciences, 2016, 92, 266-275.	4.0	35
36	Characterization of Portuguese geological materials to be used in medical hydrology. Applied Clay Science, 2011, 51, 258-266.	5.2	32

#	Article	IF	Citations
37	Crosslinked palygorskite-chitosan beads as diclofenac carriers. Applied Clay Science, 2019, 180, 105169.	5.2	32
38	Complex of chitosan pectin and clay as diclofenac carrier. Applied Clay Science, 2019, 172, 155-164.	5.2	32
39	Mathematical models describing drug release from biopolymeric delivery systems. Materials Technology, 2010, 25, 205-211.	3.0	31
40	Study of traditional Tunisian medina clays used in therapeutic and cosmetic mud-packs. Applied Clay Science, 2014, 101, 141-148.	5.2	31
41	Advanced Inorganic Nanosystems for Skin Drug Delivery. Chemical Record, 2018, 18, 891-899.	5.8	31
42	Halloysite- and Montmorillonite-Loaded Scaffolds as Enhancers of Chronic Wound Healing. Pharmaceutics, 2020, 12, 179.	4.5	31
43	Norfloxacin-Loaded Electrospun Scaffolds: Montmorillonite Nanocomposite vs. Free Drug. Pharmaceutics, 2020, 12, 325.	4.5	31
44	Microwave-initiated rapid synthesis of phthalated cashew gum for drug delivery systems. Carbohydrate Polymers, 2021, 254, 117226.	10.2	30
45	Kinetic and thermodynamic assessment on isoniazid/montmorillonite adsorption. Applied Clay Science, 2018, 165, 82-90.	5.2	28
46	Wound Healing Activity of Nanoclay/Spring Water Hydrogels. Pharmaceutics, 2020, 12, 467.	4.5	26
47	Inorganic Nanomaterials in Tissue Engineering. Pharmaceutics, 2022, 14, 1127.	4.5	26
48	Pharmaceutical and Cosmetic Uses of Fibrous Clays. Developments in Clay Science, 2011, 3, 299-324.	0.5	25
49	Molecular modeling and infrared and Raman spectroscopy of the crystal structure of the chiral antiparasitic drug Praziquantel. Journal of Molecular Modeling, 2017, 23, 106.	1.8	25
50	Development and Characterization of Xanthan Gum and Alginate Based Bioadhesive Film for Pycnogenol Topical Use in Wound Treatment. Pharmaceutics, 2021, 13, 324.	4.5	25
51	Natural Inorganic Ingredients in Wound Healing. Current Pharmaceutical Design, 2020, 26, 621-641.	1.9	24
52	Characterization of Egyptian kaolins for health-care uses. Applied Clay Science, 2017, 135, 176-189.	5.2	21
53	Physicochemical and in vitro cation release relevance of therapeutic muds "maturation― Applied Clay Science, 2015, 116-117, 1-7.	5.2	20
54	Halloysite-Doped Zinc Oxide for Enhanced Sunscreening Performance. ACS Applied Nano Materials, 2019, 2, 6575-6584.	5.0	20

#	Article	IF	Citations
55	Adjunctive use of an anti-oxidant agent to improve resistance of hybrid layers to degradation. Journal of Dentistry, 2011, 39, 80-87.	4.1	19
56	Hyperspectral remote sensing for mapping and detection of Egyptian kaolin quality. Applied Clay Science, 2018, 160, 249-262.	5.2	19
57	Crystallite size as a function of kaolinite structural order-disorder and kaolin chemical variability: Sedimentological implication. Applied Clay Science, 2018, 162, 261-267.	5.2	19
58	Chitosan/beidellite nanocomposite as diclofenac carrier. International Journal of Biological Macromolecules, 2019, 126, 44-53.	7.5	19
59	Praziquantel–Clays as Accelerated Release Systems to Enhance the Low Solubility of the Drug. Pharmaceutics, 2020, 12, 914.	4.5	19
60	Networking and rheology of concentrated clay suspensions "matured―in mineral medicinal water. International Journal of Pharmaceutics, 2013, 453, 473-479.	5.2	18
61	Conformational polymorphic changes in the crystal structure of the chiral antiparasitic drug praziquantel and interactions with calcium carbonate. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 132, 180-191.	4.3	18
62	Adsorption capacity evaluation of zeolites as carrier of isoniazid. Microporous and Mesoporous Materials, 2020, 292, 109733.	4.4	18
63	Synthesis and Characterization of Nanomaterial Based on Halloysite and Hectorite Clay Minerals Covalently Bridged. Nanomaterials, 2021, 11, 506.	4.1	18
64	Characteristics of Pharmaceutical Grade Phyllosilicate Powders. Pharmaceutical Development and Technology, 2000, 5, 47-52.	2.4	17
65	One-dimensional filtration of pharmaceutical grade phyllosilicate dispersions. International Journal of Pharmaceutics, 2001, 217, 201-213.	5.2	17
66	Intercalation of tetracycline into layered clay mineral material for drug delivery purposes. Materials Technology, 2014, 29, B96-B99.	3.0	17
67	Study of bacterial community structure and diversity during the maturation process of a therapeutic peloid. Applied Clay Science, 2016, 132-133, 59-67.	5.2	17
68	Understanding the effect of UV light in systems containing clay minerals and tetracycline. Applied Clay Science, 2019, 183, 105311.	5.2	17
69	CLAYS IN COSMETICS AND PERSONAL-CARE PRODUCTS. Clays and Clay Minerals, 2021, 69, 561-575.	1.3	17
70	Health and Medical Applications of Tubular Clay Minerals. Developments in Clay Science, 2016, 7, 708-725.	0.5	16
71	Tamoxifen/montmorillonite system – Effect of the experimental conditions. Applied Clay Science, 2019, 180, 105142.	5.2	16
72	Ground Calcium Carbonate as a Low Cost and Biosafety Excipient for Solubility and Dissolution Improvement of Praziquantel. Pharmaceutics, 2019, 11, 533.	4.5	16

#	Article	IF	Citations
73	Halloysite nanotubes as tools to improve the actual challenge of fixed doses combinations in tuberculosis treatment. Journal of Biomedical Materials Research - Part A, 2019, 107, 1513-1521.	4.0	16
74	Molecular Modeling of Adsorption of 5-Aminosalicylic Acid in the Halloysite Nanotube. Minerals (Basel, Switzerland), 2018, 8, 61.	2.0	15
75	Lipid Nanomaterials for Targeted Delivery of Dermocosmetic Ingredients: Advances in Photoprotection and Skin Anti-Aging. Nanomaterials, 2022, 12, 377.	4.1	15
76	Clays in complementary and alternative medicine. Materials Technology, 2014, 29, B78-B81.	3.0	14
77	Clay minerals for tissue regeneration, repair, and engineering. , 2016, , 385-402.		14
78	Adsorption of the tallow amine ethoxylate surfactant Ethomeen T/15 on montmorillonite. Applied Clay Science, 2018, 161, 533-543.	5.2	14
79	Pyrazole[3,4-d]pyrimidine derivatives loaded into halloysite as potential CDK inhibitors. International Journal of Pharmaceutics, 2021, 599, 120281.	5.2	14
80	Polyelectrolyte–Drug Complexes of Lambda Carrageenan and Basic Drugs: Relevance of Particle Size and Moisture Content on Compaction and Drug Release Behavior. Drug Development and Industrial Pharmacy, 2008, 34, 1188-1195.	2.0	13
81	Assessement of anti-inflammatory properties of microspheres prepared with chitosan and 5-amino salicylic acid over inflamed Caco-2 cells. Carbohydrate Polymers, 2011, 85, 638-644.	10.2	13
82	Characterisation of Andalusian peats for skin health care formulations. Applied Clay Science, 2018, 160, 201-205.	5.2	13
83	Design and characterization of a tuberculostatic hybrid based on interaction of ethambutol with a raw palygorskite. Applied Clay Science, 2019, 181, 105213.	5.2	13
84	Hybrid Systems Based on Talc and Chitosan for Controlled Drug Release. Materials, 2019, 12, 3634.	2.9	13
85	Polymer/Iron-Based Layered Double Hydroxides as Multifunctional Wound Dressings. Pharmaceutics, 2020, 12, 1130.	4.5	13
86	Flow and Tableting Behaviors of Some Egyptian Kaolin Powders as Potential Pharmaceutical Excipients. Minerals (Basel, Switzerland), 2020, 10, 23.	2.0	13
87	Lipid-Polymeric Films: Composition, Production and Applications in Wound Healing and Skin Repair. Pharmaceutics, 2021, 13, 1199.	4.5	13
88	Rheology and cation release of tunisian medina mud-packs intended for topical applications. Applied Clay Science, 2019, 171, 110-117.	5.2	12
89	Maltodextrin-amino acids electrospun scaffolds cross-linked with Maillard-type reaction for skin tissue engineering. Materials Science and Engineering C, 2022, 133, 112593.	7.3	12
90	Wound Dressing: Combination of Acacia Gum/PVP/Cyclic Dextrin in Bioadhesive Patches Loaded with Grape Seed Extract. Pharmaceutics, 2022, 14, 485.	4.5	12

#	Article	IF	Citations
91	Design and characterization of spring water hydrogels with natural inorganic excipients. Applied Clay Science, 2020, 197, 105772.	5.2	11
92	Study of Faujasite zeolite as a modified delivery carrier for isoniazid. Materials Science and Engineering C, 2021, 118, 111365.	7.3	11
93	Enhanced antimicrobial activity and physicochemical stability of rapid pyro-fabricated silver-kaolinite nanocomposite. International Journal of Pharmaceutics, 2021, 598, 120372.	5.2	11
94	Nanocomposite gels of poloxamine and Laponite for \hat{l}^2 -Lapachone release in anticancer therapy. European Journal of Pharmaceutical Sciences, 2021, 163, 105861.	4.0	11
95	Prodrug based on halloysite delivery systems to improve the antitumor ability of methotrexate in leukemia cell lines. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112385.	5.0	11
96	The effect of recrystallization on the crystal growth, melting point and solubility of ketoconazole. Thermochimica Acta, 1995, 268, 143-151.	2.7	10
97	Thermal properties of some Egyptian kaolin pastes for pelotherapeutic applications: Influence of particle geometry on thermal dosage release. Applied Clay Science, 2018, 160, 193-200.	5.2	10
98	Safety of Nanoclay/Spring Water Hydrogels: Assessment and Mobility of Hazardous Elements. Pharmaceutics, 2020, 12, 764.	4.5	10
99	Tablets of "Hydrochlorothiazide in Cyclodextrin in Nanoclay― A New Nanohybrid System with Enhanced Dissolution Properties. Pharmaceutics, 2020, 12, 104.	4.5	10
100	Polymeric Bioadhesive Patch Based on Ketoprofen-Hydrotalcite Hybrid for Local Treatments. Pharmaceutics, 2020, 12, 733.	4.5	9
101	Modeling of the adsorption of a protein-fragment on kaolinite with potential antiviral activity. Applied Clay Science, 2020, 199, 105865.	5. 2	9
102	Carvacrol Prodrugs with Antimicrobial Activity Loaded on Clay Nanocomposites. Materials, 2020, 13, 1793.	2.9	9
103	In Vitro Wound-Healing Properties of Water-Soluble Terpenoids Loaded on Halloysite Clay. Pharmaceutics, 2021, 13, 1117.	4.5	9
104	Theoretical Study of Retinol, Niacinamide and Glycolic Acid with Halloysite Clay Mineral as Active Ingredients for Topical Skin Care Formulations. Molecules, 2021, 26, 4392.	3.8	8
105	Clays as Vehicles for Drug Photostability. Pharmaceutics, 2022, 14, 796.	4.5	8
106	Characteristics of Pharmaceutical Grade Phyllosilicate Compacts. Pharmaceutical Development and Technology, 2000, 5, 53-58.	2.4	7
107	Clay-Based Pharmaceutical Formulations and Drug Delivery Systems. Pharmaceutics, 2020, 12, 1142.	4.5	7
108	Nano-delivery systems based on carvacrol prodrugs and fibrous clays. Journal of Drug Delivery Science and Technology, 2020, 58, 101815.	3.0	7

#	Article	IF	Citations
109	Characterisation of Tunisian layered clay materials to be used in semisolid health care products. Materials Technology, 2014, 29, B88-B95.	3.0	6
110	MEDICAL AND HEALTH APPLICATIONS OF NATURAL MINERAL NANOTUBES. , 2015, , 437-448.		6
111	Characterization of Venezuelan kaolins as health care ingredients. Applied Clay Science, 2019, 175, 30-39.	5. 2	6
112	New Mussel Inspired Polydopamine-Like Silica-Based Material for Dye Adsorption. Nanomaterials, 2020, 10, 1416.	4.1	6
113	Understanding Urea Encapsulation in Different Clay Minerals as a Possible System for Ruminant Nutrition. Molecules, 2019, 24, 3525.	3.8	5
114	Colloidal and Thermal Behaviors of Some Venezuelan Kaolin Pastes for Therapeutic Applications. Minerals (Basel, Switzerland), 2019, 9, 756.	2.0	5
115	Correlation between Elemental Composition/Mobility and Skin Cell Proliferation of Fibrous Nanoclay/Spring Water Hydrogels. Pharmaceutics, 2020, 12, 891.	4.5	5
116	Experimental and molecular modelling study of beta zeolite as drug delivery system. Microporous and Mesoporous Materials, 2021, 321, 111152.	4.4	4
117	Use of Clays as Nanocarriers of First-Line Tuberculostatic Drugs. Current Drug Delivery, 2017, 14, 902-903.	1.6	4
118	Clay Mineral Minerals as a Strategy for Biomolecule Incorporation: Amino Acids Approach. Materials, 2022, 15, 64.	2.9	4
119	A novel bioadhesive semisolid formulation containing chitosan and tetracycline/layered clay complexes for local delivery into periodontal pocket. Materials Technology, 2014, 29, B108-B113.	3.0	3
120	Adsorption of nutrients on natural Spanish clays for enriching seed coatings. Adsorption, 2017, 23, 821-829.	3.0	3
121	Adsorption of 5-aminosalicylic acid on kaolinite surfaces at a molecular level. Clay Minerals, 2019, 54, 49-56.	0.6	3
122	Assessment of Hectorite/Spring Water Hydrogels as Wound Healing Products. Proceedings (mdpi), 2020, 78, .	0.2	3
123	Praziquantel-loaded calcite crystals: Synthesis, physicochemical characterization, and biopharmaceutical properties of inorganic biomaterials for drug delivery. Journal of Drug Delivery Science and Technology, 2022, 68, 103021.	3.0	2
124	Melatonin/nanoclay hybrids for skin delivery. Applied Clay Science, 2022, 218, 106417.	5.2	2
125	Layered clay biomaterials and human health. Materials Technology, 2014, 29, B76-B77.	3.0	1
126	Clay minerals as filters of drug compounds for green chemistry applications. , 2022, , 403-423.		1

#	Article	IF	CITATIONS
127	Key Features of Solid Lipid Nanoparticles Prepared with Nanoclay and Spring Water Ingredients with Demonstrated Wound Healing Activity: A Pilot Study. , 2020, 78, .		O
128	Hybrid Lipid/Clay Carrier Systems Containing Annatto Oil for Topical Formulations. Pharmaceutics, 2022, 14, 1067.	4.5	0
129	New Machine Learning Approach for the Optimization of Nano-Hybrid Formulations. Nanomanufacturing, 2022, 2, 82-97.	3.6	O