Monica J Roth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3457890/publications.pdf

Version: 2024-02-01

430874 345221 1,639 67 18 36 citations h-index g-index papers 69 69 69 1026 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structure of the termini of DNA intermediates in the integration of retroviral DNA: Dependence on IN function and terminal DNA sequence. Cell, 1989, 58, 47-54.	28.9	338
2	BET proteins promote efficient murine leukemia virus integration at transcription start sites. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12036-12041.	7.1	185
3	Divalent cation modulation of the ribonuclease functions of human immunodeficiency virus reverse transcriptase. Biochemistry, 1995, 34, 9936-9943.	2.5	84
4	Gene product of moloney murine leukemia virus required for proviral integration is a DNA-binding protein. Journal of Molecular Biology, 1988, 203, 131-139.	4.2	63
5	Altering murine leukemia virus integration through disruption of the integrase and BET protein family interaction. Nucleic Acids Research, 2014, 42, 5917-5928.	14.5	63
6	Murine leukemia virus reverse transcriptase: Structural comparison with HIV-1 reverse transcriptase. Virus Research, 2008, 134, 186-202.	2.2	55
7	Viral DNA tethering domains complement replication-defective mutations in the p12 protein of MuLV Gag. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, $9487-9492$.	7.1	49
8	Altering Retroviral Tropism Using a Random-Display Envelope Library. Molecular Therapy, 2002, 5, 329-335.	8.2	38
9	Bimodal high-affinity association of Brd4 with murine leukemia virus integrase and mononucleosomes. Nucleic Acids Research, 2014, 42, 4868-4881.	14.5	37
10	Targeting a Retroviral Vector in the Absence of a Known Cell-Targeting Ligand. Human Gene Therapy, 2003, 14, 1557-1564.	2.7	36
11	RNase H Cleavage of tRNAProMediated by M-MuLV and HIV-1 Reverse Transcriptases. Virology, 1997, 229, 437-446.	2.4	34
12	RNase H Requirements for the Second Strand Transfer Reaction of Human Immunodeficiency Virus Type 1 Reverse Transcription. Journal of Virology, 1999, 73, 6573-6581.	3.4	34
13	Second-Site Changes Affect Viability of Amphotropic/Ecotropic Chimeric Enveloped Murine Leukemia Viruses. Journal of Virology, 2000, 74, 899-913.	3.4	31
14	MuLV IN mutants responsive to HDAC inhibitors enhance transcription from unintegrated retroviral DNA. Virology, 2012, 426, 188-196.	2.4	28
15	Structural and sequencing analysis of local target DNA recognition by MLV integrase. Nucleic Acids Research, 2015, 43, 5647-5663.	14.5	26
16	Analysis of Cysteine Mutations on the Transmembrane Protein of Moloney Murine Leukemia Virus. Virology, 1995, 211, 285-289.	2.4	25
17	Revealing Domain Structure through Linker-Scanning Analysis of the Murine Leukemia Virus (MuLV) RNase H and MuLV and Human Immunodeficiency Virus Type 1 Integrase Proteins. Journal of Virology, 2006, 80, 9497-9510.	3.4	23
18	Assembly and Catalysis of Concerted Two-End Integration Events by Moloney Murine Leukemia Virus Integrase. Journal of Virology, 2001, 75, 9561-9570.	3.4	20

#	Article	IF	Citations
19	Identification of a retroviral receptor used by an Envelope protein derived by peptide library screening. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11032-11037.	7.1	20
20	Probing Sequence Variation in the Receptor-Targeting Domain of Feline Leukemia Virus Envelope Proteins with Peptide Display Libraries. Journal of Virology, 2005, 79, 1463-1469.	3.4	19
21	Efficient condensed-phase production of perdeuterated soluble and membrane proteins. Journal of Structural and Functional Genomics, 2010, 11, 143-154.	1.2	18
22	Antibodyâ€directed lentiviral gene transduction in early immature hematopoietic progenitor cells. Journal of Gene Medicine, 2010, 12, 945-955.	2.8	17
23	Antibody-Directed Lentiviral Gene Transduction for Live-Cell Monitoring and Selection of Human iPS and hES Cells. PLoS ONE, 2012, 7, e34778.	2.5	17
24	MLV based viral-like-particles for delivery of toxic proteins and nuclear transcription factors. Biomaterials, 2014, 35, 8416-8426.	11.4	17
25	Functional Interactions of the HHCC Domain of Moloney Murine Leukemia Virus Integrase Revealed by Nonoverlapping Complementation and Zinc-Dependent Dimerization. Journal of Virology, 1999, 73, 1809-1817.	3.4	17
26	Single-round selection yields a unique retroviral envelope utilizing GPR172A as its host receptor. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5848-5853.	7.1	16
27	Phosphorylation Requirement of Murine Leukemia Virus p12. Journal of Virology, 2016, 90, 11208-11219.	3.4	16
28	A common binding motif in the ET domain of BRD3 forms polymorphic structural interfaces with host and viral proteins. Structure, 2021, 29, 886-898.e6.	3.3	16
29	Analysis of Mutations within the Cytoplasmic Domain of the Moloney Murine Leukemia Virus Transmembrane Protein. Virology, 1997, 227, 305-313.	2.4	15
30	Implication of a Central Cysteine Residue and the HHCC Domain of Moloney Murine Leukemia Virus Integrase Protein in Functional Multimerization. Journal of Virology, 1998, 72, 1691-1698.	3.4	15
31	Substitution of Asp114 or Arg116 in the Fingers Domain of Moloney Murine Leukemia Virus Reverse Transcriptase Affects Interactions with the Template-primer Resulting in Decreased Processivity. Journal of Molecular Biology, 2001, 305, 341-359.	4.2	14
32	Inhibition of Moloney Murine Leukemia Virus Integration Using Polyamides Targeting the Long-Terminal Repeat Sequencesâ€. Biochemistry, 2003, 42, 6249-6258.	2.5	14
33	Analysis of a Temperature-Sensitive Mutation Affecting the Integration Protein of Moloney Murine Leukemia Virus. Virology, 1993, 192, 673-678.	2.4	13
34	Functional Characterization of the N Termini of Murine Leukemia Virus Envelope Proteins. Journal of Virology, 2001, 75, 4357-4366.	3.4	13
35	Differential multimerization of Moloney murine leukemia virus integrase purified under nondenaturing conditions. Virology, 2003, 316, 146-160.	2.4	12
36	Repression of the Chromatin-Tethering Domain of Murine Leukemia Virus p12. Journal of Virology, 2016, 90, 11197-11207.	3.4	12

#	Article	IF	Citations
37	Inserting a Nuclear Targeting Signal into a Replication-Competent Moloney Murine Leukemia Virus Affects Viral Export and Is Not Sufficient for Cell Cycle-Independent Infection. Journal of Virology, 2002, 76, 8475-8484.	3.4	11
38	Selection of feline leukemia virus envelope proteins from a library by functional association with a murine leukemia virus envelope. Virology, 2006, 351, 340-348.	2.4	11
39	Crystal structures of oligonucleotides including the integrase processing site of the Moloney murine leukemia virus. Nucleic Acids Research, 2006, 34, 5353-5360.	14.5	11
40	Sequence Requirements for Removal of tRNA by an Isolated Human Immunodeficiency Virus Type 1 RNase H Domain. Journal of Virology, 1998, 72, 6805-6812.	3.4	11
41	Disrupting MLV integrase:BET protein interaction biases integration into quiescent chromatin and delays but does not eliminate tumor activation in a MYC/Runx2 mouse model. PLoS Pathogens, 2019, 15, e1008154.	4.7	10
42	An insertion mutation in the pol gene of moloney murine leukemia virus results in temperature-sensitive pol maturation and viral replication. Virology, 1989, 170, 378-384.	2.4	9
43	Role of the Mutation Q252R in Activating Membrane Fusion in the Murine Leukemia Virus Surface Envelope Protein. Journal of Virology, 2003, 77, 10841-10849.	3.4	9
44	Comparison of the convergent receptor utilization of a retargeted feline leukemia virus envelope with a naturally-occurring porcine endogenous retrovirus A. Virology, 2012, 427, 118-126.	2.4	9
45	Xâ€ray crystal structure of the Nâ€terminal region of <scp>M</scp> oloney murine leukemia virus integrase and its implications for viral DNA recognition. Proteins: Structure, Function and Bioinformatics, 2017, 85, 647-656.	2.6	9
46	G541R within the 4070A TM Protein Regulates Fusion in Murine Leukemia Viruses. Journal of Virology, 2003, 77, 12011-12021.	3.4	8
47	Development of an enzyme-linked immunosorbent assay based on the murine leukemia virus p30 capsid protein. Journal of Virological Methods, 2013, 193, 332-336.	2.1	8
48	Library screening and receptor-directed targeting of gammaretroviral vectors. Future Microbiology, 2013, 8, 107-121.	2.0	8
49	Mutational Analysis of the N-Terminus of Moloney Murine Leukemia Virus Integrase. Virology, 2001, 291, 32-45.	2.4	7
50	Functional interaction between the N- and C-terminal domains of murine leukemia virus surface envelope protein. Virology, 2003, 310, 130-140.	2.4	7
51	Alteration and Analyses of Viral Entry with Libraryâ€Derived Peptides. Advances in Virus Research, 2005, 65, 147-172.	2.1	7
52	Differential Effects of C-Terminal Molecular Tagged Integrase on Replication Competent Moloney Murine Leukemia Virus. Virology, 2000, 274, 412-419.	2.4	6
53	G100R Mutation within 4070A Murine Leukemia Virus Env Increases Virus Receptor Binding, Kinetics of Entry, and Viral Transduction Efficiency. Journal of Virology, 2003, 77, 739-743.	3.4	6
54	Expression of the C-terminus of HIV-1 reverse transcriptase p66 and p51 subunits as a single polypeptide with RNase H activity. Protein Engineering, Design and Selection, 2004, 17, 581-587.	2.1	6

#	Article	IF	CITATIONS
55	Comparison of Second-Strand Transfer Requirements and RNase H Cleavages Catalyzed by Human Immunodeficiency Virus Type 1 Reverse Transcriptase (RT) and E478Q RT. Journal of Virology, 2000, 74, 9668-9679.	3.4	5
56	Identification of conformational and cold-sensitive mutations in the MuLV Envelope protein. Virology, 2003, 312, 337-349.	2.4	4
57	Molecular analysis of a recombinant M-MuLV/RaLV retrovirus. Virology, 2003, 315, 195-208.	2.4	3
58	Lysine Directed Cross-Linking of Viral DNAâ^'RNA:DNA Hybrid Substrate to the Isolated RNase H Domain of HIV-1 Reverse Transcriptaseâ€. Biochemistry, 2004, 43, 1302-1308.	2.5	3
59	Expression of an Mg ²⁺ -Dependent HIV-1 RNase H Construct for Drug Screening. Antimicrobial Agents and Chemotherapy, 2011, 55, 4735-4741.	3.2	3
60	Gene delivery in a mouse xenograft of a retargeted retrovirus to a solid 143B osteosarcoma. Virology Journal, 2013, 10, 194.	3.4	2
61	Crosslinking and mass spectrometry suggest that the isolated NTD domain dimer of Moloney murine leukemia virus integrase adopts a parallel arrangement in solution. BMC Structural Biology, 2013, 13, 14.	2.3	2
62	Role of Cysteines in Stabilizing the Randomized Receptor Binding Domains within Feline Leukemia Virus Envelope Proteins. Journal of Virology, 2016, 90, 2971-2980.	3.4	2
63	Characterization of the long-terminal repeat single-strand tail-binding site of Moloney-MuLV integrase by crosslinking. Biological Research, 2008, 41, .	3.4	2
64	The MuLV 4070A G541R Env mutation decreases the stability and alters the conformation of the TM ectodomain. Virology, 2008, 371, 165-174.	2.4	1
65	Assays for Retroviral RNase H. Methods in Enzymology, 2001, 341, 440-452.	1.0	O
66	823. SLC350F2 Transporter Protein Is the Receptor Targeted by a Library-Selected Retroviral Envelope. Molecular Therapy, 2006, 13, S319.	8.2	0
67	BET proteins target murine leukemia virus integration to transcription start sites. Retrovirology, 2013, 10, .	2.0	O