
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3457580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
2	Interferometer design of the KAGRA gravitational wave detector. Physical Review D, 2013, 88, .	4.7	722
3	The Japanese space gravitational wave antenna: DECIGO. Classical and Quantum Gravity, 2011, 28, 094011.	4.0	456
4	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
5	Overview of KAGRA: Detector design and construction history. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	198
6	Current status of space gravitational wave antenna DECIGO and B-DECIGO. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	150
7	Optical Ring Cavity Search for Axion Dark Matter. Physical Review Letters, 2018, 121, 161301.	7.8	83
8	Construction of KAGRA: an underground gravitational-wave observatory. Progress of Theoretical and Experimental Physics, 2018, 2018, .	6.6	73
9	Space gravitational-wave antennas DECIGO and B-DECIGO. International Journal of Modern Physics D, 2019, 28, 1845001.	2.1	73
10	Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	66
11	Axion Dark Matter Search with Interferometric Gravitational Wave Detectors. Physical Review Letters, 2019, 123, 111301.	7.8	58
12	First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA. Classical and Quantum Gravity, 2019, 36, 165008.	4.0	45
13	Demonstration of Displacement Sensing of a mg-Scale Pendulum for mm- and mg-Scale Gravity Measurements. Physical Review Letters, 2019, 122, 071101.	7.8	43
14	Polarization test of gravitational waves from compact binary coalescences. Physical Review D, 2018, 98, .	4.7	40
15	Overview of KAGRA: KAGRA science. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	31
16	Hardâ^'Soft Conversion in Network Polymers: Effect of Molecular Weight of Crystallizable Prepolymer. Macromolecules, 2010, 43, 1011-1015.	4.8	29
17	5-mg suspended mirror driven by measurement-induced backaction. Physical Review A, 2015, 92, .	2.5	24
18	Ultralight vector dark matter search with auxiliary length channels of gravitational wave detectors. Physical Review D, 2020, 102, .	4.7	24

#	Article	IF	CITATIONS
19	Improved sensitivity of interferometric gravitational-wave detectors to ultralight vector dark matter from the finite light-traveling time. Physical Review D, 2021, 103, .	4.7	24
20	New Limit on Lorentz Violation Using a Double-Pass Optical Ring Cavity. Physical Review Letters, 2013, 110, 200401.	7.8	20
21	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
22	Prospects for gravitational-wave polarization tests from compact binary mergers with future ground-based detectors. Physical Review D, 2019, 100, .	4.7	19
23	Attonewton-meter torque sensing with a macroscopic optomechanical torsion pendulum. Physical Review A, 2020, 101, .	2.5	18
24	Quantum sensing with milligram scale optomechanical systems. European Physical Journal D, 2020, 74, 1.	1.3	17
25	Axion dark matter search using arm cavity transmitted beams of gravitational wave detectors. Physical Review D, 2021, 104, .	4.7	16
26	Optical levitation of a mirror for reaching the standard quantum limit. Optics Express, 2017, 25, 13799.	3.4	15
27	Particle swarm optimization of the sensitivity of a cryogenic gravitational wave detector. Physical Review D, 2018, 97, .	4.7	15
28	Direct approach for the fluctuation-dissipation theorem under nonequilibrium steady-state conditions. Physical Review D, 2018, 97, .	4.7	15
29	Cryogenic suspension design for a kilometer-scale gravitational-wave detector. Classical and Quantum Gravity, 2021, 38, 085013.	4.0	15
30	Optically trapped mirror for reaching the standard quantum limit. Optics Express, 2014, 22, 12915.	3.4	14
31	Mirror actuation design for the interferometer control of the KAGRA gravitational wave telescope. Classical and Quantum Gravity, 2017, 34, 225001.	4.0	14
32	Torsion-Bar Antenna: A ground-based mid-frequency and low-frequency gravitational wave detector. International Journal of Modern Physics D, 2020, 29, 1940003.	2.1	14
33	DANCE: Dark matter Axion search with riNg Cavity Experiment. Journal of Physics: Conference Series, 2020, 1468, 012032.	0.4	13
34	The Current Status and Future Prospects of KAGRA, the Large-Scale Cryogenic Gravitational Wave Telescope Built in the Kamioka Underground. Galaxies, 2022, 10, 63.	3.0	13
35	Seismic cross-coupling noise in torsion pendulums. Physical Review D, 2018, 97, .	4.7	12
36	Prospects for improving the sensitivity of the cryogenic gravitational wave detector KAGRA. Physical Review D, 2020, 102, .	4.7	12

#	Article	IF	CITATIONS
37	Optimization of quantum noise by completing the square of multiple interferometer outputs in quantum locking for gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126626.	2.1	12
38	Improvement of the Target Sensitivity in DECIGO by Optimizing Its Parameters for Quantum Noise Including the Effect of Diffraction Loss. Galaxies, 2021, 9, 14.	3.0	11
39	Influence of nonuniformity in sapphire substrates for a gravitational wave telescope. Physical Review D, 2019, 100, .	4.7	10
40	An arm length stabilization system for KAGRA and future gravitational-wave detectors. Classical and Quantum Gravity, 2020, 37, 035004.	4.0	10
41	Quantum Noise in a Fabry-Perot Interferometer Including the Influence of Diffraction Loss of Light. Galaxies, 2021, 9, 9.	3.0	10
42	Vibration isolation system with a compact damping system for power recycling mirrors of KAGRA. Classical and Quantum Gravity, 2019, 36, 095015.	4.0	9
43	Optical cavity limits on higher order Lorentz violation. Physical Review D, 2013, 88, .	4.7	8
44	Application of independent component analysis to the iKAGRA data. Progress of Theoretical and Experimental Physics, 2020, 2020, .	6.6	7
45	Vibration isolation systems for the beam splitter and signal recycling mirrors of the KAGRA gravitational wave detector. Classical and Quantum Gravity, 2021, 38, 065011.	4.0	7
46	Direct measurement of optical-trap-induced decoherence. Physical Review A, 2016, 94, .	2.5	5
47	Compact integrated optical sensors and electromagnetic actuators for vibration isolation systems in the gravitational-wave detector KAGRA. Review of Scientific Instruments, 2020, 91, 115001.	1.3	5
48	Design and experimental demonstration of a laser modulation system for future gravitational-wave detectors. Classical and Quantum Gravity, 2019, 36, 205009.	4.0	4
49	Reduction of quantum noise using the quantum locking with an optical spring for gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 402, 127365.	2.1	4
50	Displacement-noise-free neutron interferometer for gravitational wave detection using a single Mach-Zehnder configuration. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 441, 128150.	2.1	4
51	Performance of the KAGRA detector during the first joint observation with GEO 600 (O3GK). Progress of Theoretical and Experimental Physics, 2023, 2023, .	6.6	4
52	Optical trapping of the transversal motion for an optically levitated mirror. Physical Review A, 2020, 102, .	2.5	3
53	Demonstration of a dual-pass differential Fabry–Perot interferometer for future interferometric space gravitational wave antennas. Classical and Quantum Gravity, 2021, 38, 085018.	4.0	3
54	Improving force sensitivity by amplitude measurements of light reflected from a detuned optomechanical cavity. Physical Review A, 2021, 104, .	2.5	3

#	Article	IF	CITATIONS
55	Prospects for improving the sensitivity of KAGRA gravitational wave detector. , 2022, , .		3
56	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
57	First observation and analysis of DANCE: Dark matter Axion search with riNg Cavity Experiment. Journal of Physics: Conference Series, 2021, 2156, 012042.	0.4	2
58	Dark matter Axion search with riNg Cavity Experiment DANCE: Design and development of auxiliary cavity for simultaneous resonance of linear polarizations. Journal of Physics: Conference Series, 2021, 2156, 012182.	0.4	2
59	Axion Dark Matter Search with Interferometrie Gravitational Wave Detectors. Journal of Physics: Conference Series, 2020, 1468, 012027.	0.4	1
60	The current status of contribution activities in Japan for LISA. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	1
61	Ultralight dark matter searches with KAGRA gravitational wave telescope. Journal of Physics: Conference Series, 2021, 2156, 012071.	0.4	1
62	Tests of Lorentz Invariance with an Optical Ring Cavity. Springer Theses, 2017, , .	0.1	0
63	TESTING LORENTZ INVARIANCE WITH A DOUBLE-PASS OPTICAL RING CAVITY. , 2014, , 216-219.		0
64	Higher order test of Lorentz invariance with an optical ring cavity. , 2017, , .		0
65	Polarization test of gravitational waves from compact binary coalescences. , 2022, , .		0
66	Constructing test bench for integration tests of components developed for DECIGO and B-DECIGO. , 2022, , .		0