Maciej KuÅ>mider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3455594/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pro-cognitive effect of acute imipramine administration correlates with direct interaction of BDNF with its receptor, Trkl². Brain Research, 2022, 1789, 147948.	2.2	1
2	Identification of Molecular Markers of Clozapine Action in Ketamine-Induced Cognitive Impairment: A GPCR Signaling PathwayFinder Study. International Journal of Molecular Sciences, 2021, 22, 12203.	4.1	3
3	Restraint Stress in Mice Alters Set of 25 miRNAs Which Regulate Stress- and Depression-Related mRNAs. International Journal of Molecular Sciences, 2020, 21, 9469.	4.1	8
4	Time-course of changes in key catecholaminergic receptors and trophic systems in rat brain after antidepressant administration. Neurochemistry International, 2020, 141, 104885.	3.8	8
5	Genetic variants in dopamine receptors influence on heterodimerization in the context of antipsychotic drug action. Progress in Molecular Biology and Translational Science, 2020, 169, 279-296.	1.7	3
6	Serum Level of miR-1 and miR-155 as Potential Biomarkers of Stress-Resilience of NET-KO and SWR/J Mice. Cells, 2020, 9, 917.	4.1	11
7	Genomic Screening of Wistar and Wistar-Kyoto Rats Exposed to Chronic Mild Stress and Deep Brain Stimulation of Prefrontal Cortex. Neuroscience, 2019, 423, 66-75.	2.3	11
8	Clozapine administered repeatedly following pretreatment with ketamine enhances dopamine D2 receptors in the dopamine mesolimbic pathway in mice brain. Neuroscience Letters, 2019, 707, 134292.	2.1	5
9	Understanding GPCR dimerization. Methods in Cell Biology, 2019, 149, 155-178.	1.1	19
10	Regulation of somatostatin receptor 2 in the context of antidepressant treatment response in chronic mild stress in rat. Psychopharmacology, 2018, 235, 2137-2149.	3.1	11
11	Paroxetine and Low-dose Risperidone Induce Serotonin 5-HT1A and Dopamine D2 Receptor Heteromerization in the Mouse Prefrontal Cortex. Neuroscience, 2018, 377, 184-196.	2.3	12
12	Effects on brain-derived neurotrophic factor signalling of chronic mild stress, chronic risperidone and acute intracranial dopamine receptor challenges. Behavioural Pharmacology, 2018, 29, 537-542.	1.7	1
13	Effects of imipramine on cytokines panel in the rats serum during the drug treatment and discontinuation. Neurochemistry International, 2018, 113, 85-91.	3.8	3
14	Behavioral response to imipramine under chronic mild stress corresponds with increase of mRNA encoding somatostatin receptors sst2 and sst4 expression in medial habenular nucleus. Neurochemistry International, 2018, 121, 108-113.	3.8	2
15	Repeated Clozapine Increases the Level of Serotonin 5-HT1AR Heterodimerization with 5-HT2A or Dopamine D2 Receptors in the Mouse Cortex. Frontiers in Molecular Neuroscience, 2018, 11, 40.	2.9	27
16	Effect of clozapine on ketamine-induced deficits in attentional set shift task in mice. Psychopharmacology, 2017, 234, 2103-2112.	3.1	22
17	Basal prolactin levels in rat plasma correlates with response to antidepressant treatment in animal model of depression. Neuroscience Letters, 2017, 647, 147-152.	2.1	9
18	Antidepressants promote formation of heterocomplexes of dopamine D2 and somatostatin subtype 5 receptors in the mouse striatum. Brain Research Bulletin, 2017, 135, 92-97.	3.0	8

Maciej KuÅ>mider

#	Article	IF	CITATIONS
19	Reciprocal MicroRNA Expression in Mesocortical Circuit and Its Interplay with Serotonin Transporter Define Resilient Rats in the Chronic Mild Stress. Molecular Neurobiology, 2017, 54, 5741-5751.	4.0	33
20	Chronic mild stress alters the somatostatin receptors in the rat brain. Psychopharmacology, 2016, 233, 255-266.	3.1	26
21	Time-dependent miR-16 serum fluctuations together with reciprocal changes in the expression level of miR-16 in mesocortical circuit contribute to stress resilient phenotype in chronic mild stress – An animal model of depression. European Neuropsychopharmacology, 2016, 26, 23-36.	0.7	37
22	Discovering the mechanisms underlying serotonin (5â€ <scp>HT</scp>) _{2A} and 5â€ <scp>HT</scp> _{2C} receptor regulation following nicotine withdrawal in rats. Journal of Neurochemistry, 2015, 134, 704-716.	3.9	14
23	Life-long norepinephrine transporter (NET) knock-out leads to the increase in the NET mRNA in brain regions rich in norepinephrine terminals. European Neuropsychopharmacology, 2015, 25, 1099-1108.	0.7	1
24	Effect of desipramine on gene expression in the mouse frontal cortex – Microarray study. Pharmacological Reports, 2015, 67, 345-348.	3.3	3
25	Norepinephrine transporter knock-out alters expression of the genes connected with antidepressant drugs action. Brain Research, 2015, 1594, 284-292.	2.2	5
26	Dopamine D1 and D2 Receptors in Chronic Mild Stress: Analysis of Dynamic Receptor Changes in an Animal Model of Depression Using In Situ Hybridization and Autoradiography. Neuromethods, 2015, , 355-375.	0.3	3
27	Prolactin and its receptors in the chronic mild stress rat model of depression. Brain Research, 2014, 1555, 48-59.	2.2	27
28	Differential stress response in rats subjected to chronic mild stress is accompanied by changes in CRH-family gene expression at the pituitary level. Peptides, 2014, 61, 98-106.	2.4	14
29	Mesolimbic dopamine D2 receptor plasticity contributes to stress resilience in rats subjected to chronic mild stress. Psychopharmacology, 2013, 227, 583-593.	3.1	48
30	Involvement of prolactin and somatostatin in depression and the mechanism of action of antion and antidepressant drugs. Pharmacological Reports, 2013, 65, 1640-1646.	3.3	28
31	Potential role of G protein-coupled receptor (GPCR) heterodimerization in neuropsychiatric disorders: A focus on depression. Pharmacological Reports, 2013, 65, 1498-1505.	3.3	14
32	Antidepressant drugs promote the heterodimerization of the dopamine D2 and somatostatin Sst5 receptors – fluorescence in vitro studies. Pharmacological Reports, 2012, 64, 1253-1258.	3.3	9
33	Analysis of region-specific changes in gene expression upon treatment with citalopram and desipramine reveals temporal dynamics in response to antidepressant drugs at the transcriptome level. Psychopharmacology, 2012, 223, 281-297.	3.1	15
34	Long-lasting increase in [3H]CP55,940 binding to CB1 receptors following cocaine self-administration and its withdrawal in rats. Brain Research, 2012, 1451, 34-43.	2.2	17
35	Intrahepatic expression of genes related to metabotropic receptors in chronic hepatitis. World Journal of Gastroenterology, 2012, 18, 4156.	3.3	2
36	Norepinephrine transporter (NET) knock-out upregulates dopamine and serotonin transporters in the mouse brain. Neurochemistry International, 2011, 59, 185-191.	3.8	14

Maciej KuÅ>mider

#	Article	IF	CITATIONS
37	P.1.028 Serum levels of somatostatin-28 and its binding sites in medial habenular nucleus differentiate rats responding and non responding to chronic mild stress. European Neuropsychopharmacology, 2011, 21, S131-S132.	0.7	1
38	Changes in the level of calcyon mRNA in the brain of rats exposed to cocaine, self-administered or received passively. European Journal of Pharmacology, 2010, 634, 33-39.	3.5	0
39	Effect of chronic mild stress and imipramine on the proteome of the rat dentate gyrus. Journal of Neurochemistry, 2010, 113, 848-859.	3.9	28
40	P.1.a.020 Expression of calcyon gene in rat brain after stressfull behavioural procedures. European Neuropsychopharmacology, 2010, 20, S223-S224.	0.7	1
41	P.1.13 Time-dependent alterations in genes expression in rat brain after administration of antidepressants — a gene miccroarray, RT-PCR study. European Neuropsychopharmacology, 2009, 19, S13-S13.	0.7	Ο
42	Neuroadaptive changes in the rat brain GABAB receptors after withdrawal from cocaine self-administration. European Journal of Pharmacology, 2008, 599, 58-64.	3.5	18
43	The role of D1–D2 receptor hetero-dimerization in the mechanism of action of clozapine. European Neuropsychopharmacology, 2008, 18, 682-691.	0.7	38
44	Alterations in gamma-aminobutyric acid(B) receptor binding in the rat brain after reinstatement of cocaine-seeking behavior. Pharmacological Reports, 2008, 60, 834-43.	3.3	13
45	Expression of proopiomelanocortin, proenkephalin and prodynorphin genes in porcine theca and granulosa cells. Animal Reproduction Science, 2007, 101, 97-112.	1.5	19
46	P.1.29 Effect of clozapine on dopamine D1 and D2 receptors interaction in the HEK 293 cells. European Neuropsychopharmacology, 2007, 17, S25-S26.	0.7	0
47	Active versus passive cocaine administration: Differences in the neuroadaptive changes in the brain dopaminergic system. Brain Research, 2007, 1157, 1-10.	2.2	44
48	Effect of citalopram in the modified forced swim test in rats. Pharmacological Reports, 2007, 59, 785-8.	3.3	17
49	Fluorescence Studies Reveal Heterodimerization of Dopamine D1 and D2 Receptors in the Plasma Membrane. Biochemistry, 2006, 45, 8751-8759.	2.5	62
50	Delayed effects of antidepressant drugs in rats. Behavioural Pharmacology, 2006, 17, 641-649.	1.7	18
51	Alterations in BDNF and trkB mRNAs following acute or sensitizing cocaine treatments and withdrawal. Brain Research, 2006, 1071, 218-225.	2.2	98
52	Effect of Antidepressant Drugs in Mice Lacking the Norepinephrine Transporter. Neuropsychopharmacology, 2006, 31, 2424-2432.	5.4	64
53	Effects of PRI-2191—A low-calcemic analog of 1,25-dihydroxyvitamin D3 on the seizure-induced changes in brain gene expression and immune system activity in the rat. Brain Research, 2005, 1039, 1-13. 	2.2	13
54	Long-term exposure of rats to tramadol alters brain dopamine and $\hat{I}\pm 1$ -adrenoceptor function that may be related to antidepressant potency. European Journal of Pharmacology, 2004, 501, 103-110.	3.5	35

#	Article	IF	CITATIONS
55	Effects of tramadol on $\hat{l}\pm 2$ -adrenergic receptors in the rat brain. Brain Research, 2004, 1016, 263-267.	2.2	27