Batsheva Kerem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/345534/publications.pdf

Version: 2024-02-01

46 papers 4,894 citations

28 h-index 223800 46 g-index

50 all docs

50 docs citations

50 times ranked

5814 citing authors

#	Article	IF	CITATIONS
1	Nucleotide Deficiency Promotes Genomic Instability in Early Stages of Cancer Development. Cell, 2011, 145, 435-446.	28.9	685
2	Gentamicin-Induced Correction of CFTR Function in Patients with Cystic Fibrosis and CFTRStop Mutations. New England Journal of Medicine, 2003, 349, 1433-1441.	27.0	473
3	Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet, The, 2008, 372, 719-727.	13.7	364
4	A role for common fragile site induction in amplification of human oncogenes. Cancer Cell, 2002, 1, 89-97.	16.8	267
5	Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. Journal of Clinical Investigation, 2007, 117, 683-692.	8.2	252
6	The presence of extra chromosomes leads to genomic instability. Nature Communications, 2016, 7, 10754.	12.8	235
7	Molecular Basis for Expression of Common and Rare Fragile Sites. Molecular and Cellular Biology, 2003, 23, 7143-7151.	2.3	211
8	A Pilot Study of the Effect of Gentamicin on Nasal Potential Difference Measurements in Cystic Fibrosis Patients Carrying Stop Mutations. American Journal of Respiratory and Critical Care Medicine, 2000, 161, 860-865.	5.6	202
9	Splicing regulation as a potential genetic modifier. Trends in Genetics, 2002, 18, 123-127.	6.7	197
10	Failure of Origin Activation in Response to Fork Stalling Leads to Chromosomal Instability at Fragile Sites. Molecular Cell, 2011, 43, 122-131.	9.7	157
11	The molecular basis of common and rare fragile sites. Cancer Letters, 2006, 232, 13-26.	7.2	131
12	Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability. Genes and Development, 2005, 19, 2715-2726.	5.9	114
13	Replication Delay along FRA7H, a Common Fragile Site on Human Chromosome 7, Leads to Chromosomal Instability. Molecular and Cellular Biology, 2000, 20, 4420-4427.	2.3	110
14	Clinical and Genetic Risk Factors for Cystic Fibrosis-related Liver Disease. Pediatrics, 1999, 103, 52-57.	2.1	108
15	Genomic Instability in Human Pluripotent Stem Cells Arises from Replicative Stress and Chromosome Condensation Defects. Cell Stem Cell, 2016, 18, 253-261.	11.1	106
16	Genotype-phenotype correlations in cystic fibrosis. , 1996, 22, 387-395.		102
17	The efficiency of nonsense-mediated mRNA decay is an inherent character and varies among different cells. European Journal of Human Genetics, 2007, 15, 1156-1162.	2.8	102
18	The Molecular Basis for Disease Variability in Cystic Fibrosis. European Journal of Human Genetics, 1996, 4, 65-73.	2.8	101

#	Article	IF	CITATIONS
19	The Molecular Basis of Disease Variability among Cystic Fibrosis Patients Carrying the 3849+10 kb C→T Mutation. Genomics, 1998, 53, 276-283.	2.9	87
20	The splicing machinery is a genetic modifier of disease severity. Trends in Genetics, 2005, 21, 480-483.	6.7	72
21	The complex basis underlying common fragile site instability in cancer. Trends in Genetics, 2012, 28, 295-302.	6.7	72
22	Oncogenes create a unique landscape of fragile sites. Nature Communications, 2015, 6, 7094.	12.8	72
23	Restoration of the cystic fibrosis transmembrane conductance regulator function by splicing modulation. EMBO Reports, 2004, 5, 1071-1077.	4.5	65
24	Identification of Dormancy-Associated MicroRNAs for the Design of Osteosarcoma-Targeted Dendritic Polyglycerol Nanopolyplexes. ACS Nano, 2016, 10, 2028-2045.	14.6	64
25	Highly variable incidence of cystic fibrosis and different mutation distribution among different Jewish ethnic groups in Israel. Human Genetics, 1995, 96, 193-197.	3.8	63
26	The complex nature of fragile site plasticity and its importance in cancer. Current Opinion in Cell Biology, 2016, 40, 131-136.	5.4	56
27	3D genome organization contributes to genome instability at fragile sites. Nature Communications, 2020, 11, 3613.	12.8	46
28	New approaches to genetic therapies for cystic fibrosis. Journal of Cystic Fibrosis, 2020, 19, S54-S59.	0.7	46
29	The unfolded protein response affects readthrough of premature termination codons. EMBO Molecular Medicine, 2014, 6, 685-701.	6.9	31
30	The suppression of premature termination codons and the repair of splicing mutations in CFTR. Current Opinion in Pharmacology, 2017, 34, 125-131.	3.5	30
31	Antisense oligonucleotide-based drug development for Cystic Fibrosis patients carrying the 3849+10Âkb C-to-T splicing mutation. Journal of Cystic Fibrosis, 2021, 20, 865-875.	0.7	30
32	Folate levels modulate oncogeneâ€induced replication stress and tumorigenicity. EMBO Molecular Medicine, 2015, 7, 1138-1152.	6.9	28
33	AT-dinucleotide rich sequences drive fragile site formation. Nucleic Acids Research, 2019, 47, 9685-9695.	14.5	28
34	Interplay between genetic and epigenetic factors governs common fragile site instability in cancer. Cellular and Molecular Life Sciences, 2014, 71, 4495-4506.	5.4	26
35	FRA18C: a new aphidicolin-inducible fragile site on chromosome 18q22, possibly associated with in vivo chromosome breakage. Journal of Medical Genetics, 2007, 44, 347-352.	3.2	24
36	Transcriptional Dynamics in Colorectal Carcinogenesis: New Insights into the Role of c-Myc and miR17 in Benign to Cancer Transformation. Cancer Research, 2014, 74, 5532-5540.	0.9	19

#	Article	lF	CITATIONS
37	DNA replication stress drives fragile site instability. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2018, 808, 56-61.	1.0	19
38	Impaired Replication Stress Response in Cells from Immunodeficiency Patients Carrying Cernunnos/XLF Mutations. PLoS ONE, 2009, 4, e4516.	2.5	19
39	Oncogene-Induced Replication Stress Drives Genome Instability and Tumorigenesis. International Journal of Molecular Sciences, 2017, 18, 1339.	4.1	18
40	Antisense oligonucleotide splicing modulation as a novel Cystic Fibrosis therapeutic approach for the W1282X nonsense mutation. Journal of Cystic Fibrosis, 2022, 21, 630-636.	0.7	18
41	Genomic instability in fragile sites—still adding the pieces. Genes Chromosomes and Cancer, 2019, 58, 295-304.	2.8	15
42	Screening of CFTR mutations in an isolated population: identification of carriers and patients. European Journal of Human Genetics, 1998, 6, 181-184.	2.8	11
43	Genotypeâ€phenotype correlations in cystic fibrosis. Pediatric Pulmonology, 1996, 22, 387-395.	2.0	4
44	Continuous chromosomal instability in human pluripotent stem cells – the role of DNA replication. Molecular and Cellular Oncology, 2016, 3, e1183743.	0.7	3
45	Take it personally: how personal we reach when we are so different from each other?. Journal of Cystic Fibrosis, 2019, 18, 6-7.	0.7	3
46	To break or not to break – context matters. Molecular and Cellular Oncology, 2016, 3, e1072657.	0.7	1