
## Donald M Camaioni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3455056/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal–Organic<br>Framework. Journal of the American Chemical Society, 2017, 139, 10294-10301.                                                       | 13.7 | 282       |
| 2  | Selective catalytic hydroalkylation and deoxygenation of substituted phenols to bicycloalkanes.<br>Journal of Catalysis, 2012, 288, 92-103.                                                                                          | 6.2  | 213       |
| 3  | Quantitatively Probing the Al Distribution in Zeolites. Journal of the American Chemical Society, 2014, 136, 8296-8306.                                                                                                              | 13.7 | 199       |
| 4  | Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an<br>NU-1000 Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 9292-9304.                                      | 13.7 | 131       |
| 5  | Pore-Engineered Metal–Organic Frameworks with Excellent Adsorption of Water and Fluorocarbon<br>Refrigerant for Cooling Applications. Journal of the American Chemical Society, 2017, 139, 10601-10604.                              | 13.7 | 128       |
| 6  | Genesis and Stability of Hydronium Ions in Zeolite Channels. Journal of the American Chemical Society, 2019, 141, 3444-3455.                                                                                                         | 13.7 | 119       |
| 7  | Hydrogenation of benzaldehyde via electrocatalysis and thermal catalysis on carbon-supported metals. Journal of Catalysis, 2018, 359, 68-75.                                                                                         | 6.2  | 116       |
| 8  | Dehydration Pathways of 1-Propanol on HZSM-5 in the Presence and Absence of Water. Journal of the<br>American Chemical Society, 2015, 137, 15781-15794.                                                                              | 13.7 | 110       |
| 9  | Enhancing the catalytic activity of hydronium ions through constrained environments. Nature Communications, 2017, 8, 14113.                                                                                                          | 12.8 | 94        |
| 10 | Palladium atalyzed Hydrolytic Cleavage of Aromatic Câ^'O Bonds. Angewandte Chemie - International<br>Edition, 2017, 56, 2110-2114.                                                                                                   | 13.8 | 89        |
| 11 | Sinterâ€Resistant Platinum Catalyst Supported by Metal–Organic Framework. Angewandte Chemie -<br>International Edition, 2018, 57, 909-913.                                                                                           | 13.8 | 88        |
| 12 | Well-Defined Rhodium–Gallium Catalytic Sites in a Metal–Organic Framework: Promoter-Controlled<br>Selectivity in Alkyne Semihydrogenation to <i>E</i> -Alkenes. Journal of the American Chemical Society,<br>2018, 140, 15309-15318. | 13.7 | 88        |
| 13 | Electrocatalytic Hydrogenation of Phenol over Platinum and Rhodium: Unexpected Temperature<br>Effects Resolved. ACS Catalysis, 2016, 6, 7466-7470.                                                                                   | 11.2 | 86        |
| 14 | Ni <sub>3</sub> P as a high-performance catalytic phase for the hydrodeoxygenation of phenolic compounds. Green Chemistry, 2018, 20, 609-619.                                                                                        | 9.0  | 86        |
| 15 | Copper-zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO2 to methanol.<br>Nature Communications, 2020, 11, 5849.                                                                                          | 12.8 | 86        |
| 16 | Solvent-determined mechanistic pathways in zeolite-H-BEA-catalysed phenol alkylation. Nature<br>Catalysis, 2018, 1, 141-147.                                                                                                         | 34.4 | 85        |
| 17 | Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to<br>Form Heterobimetallic Nanowires. Journal of the American Chemical Society, 2017, 139, 10410-10418.                                  | 13.7 | 74        |
| 18 | Palladium atalyzed Hydrolytic Cleavage of Aromatic Câ^'O Bonds. Angewandte Chemie, 2017, 129,<br>2142-2146.                                                                                                                          | 2.0  | 71        |

DONALD M CAMAIONI

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Aqueous phase catalytic and electrocatalytic hydrogenation of phenol and benzaldehyde over platinum group metals. Journal of Catalysis, 2020, 382, 372-384.                                                         | 6.2  | 68        |
| 20 | Impact of Zeolite Aging in Hot Liquid Water on Activity for Acid-Catalyzed Dehydration of Alcohols.<br>Journal of the American Chemical Society, 2015, 137, 10374-10382.                                            | 13.7 | 63        |
| 21 | Following Solidâ€Acidâ€Catalyzed Reactions by MAS NMR Spectroscopy in Liquid Phase—Zeoliteâ€Catalyzed<br>Conversion of Cyclohexanol in Water. Angewandte Chemie - International Edition, 2014, 53, 479-482.         | 13.8 | 57        |
| 22 | Mechanism of Phenol Alkylation in Zeolite H-BEA Using In Situ Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2017, 139, 9178-9185.                                                         | 13.7 | 56        |
| 23 | Stability of Zeolites in Aqueous Phase Reactions. Chemistry of Materials, 2017, 29, 7255-7262.                                                                                                                      | 6.7  | 55        |
| 24 | Impact of pH on Aqueous-Phase Phenol Hydrogenation Catalyzed by Carbon-Supported Pt and Rh. ACS<br>Catalysis, 2019, 9, 1120-1128.                                                                                   | 11.2 | 55        |
| 25 | Tailoring nanoscopic confines to maximize catalytic activity of hydronium ions. Nature<br>Communications, 2017, 8, 15442.                                                                                           | 12.8 | 51        |
| 26 | Impact of Aqueous Medium on Zeolite Framework Integrity. Chemistry of Materials, 2015, 27, 3533-3545.                                                                                                               | 6.7  | 50        |
| 27 | Carbon-supported Pt during aqueous phenol hydrogenation with and without applied electrical potential: X-ray absorption and theoretical studies of structure and adsorbates. Journal of Catalysis, 2018, 368, 8-19. | 6.2  | 49        |
| 28 | Hydrodeoxygenation of phenolic compounds to cycloalkanes over supported nickel phosphides.<br>Catalysis Today, 2019, 319, 48-56.                                                                                    | 4.4  | 47        |
| 29 | Sealed rotors for in situ high temperature high pressure MAS NMR. Chemical Communications, 2015, 51, 13458-13461.                                                                                                   | 4.1  | 46        |
| 30 | The Critical Role of Reductive Steps in the Nickelâ€Catalyzed Hydrogenolysis and Hydrolysis of Aryl<br>Ether Câ~'O Bonds. Angewandte Chemie - International Edition, 2020, 59, 1445-1449.                           | 13.8 | 40        |
| 31 | Hydrogen Bonding Enhances the Electrochemical Hydrogenation of Benzaldehyde in the Aqueous<br>Phase. Angewandte Chemie - International Edition, 2021, 60, 290-296.                                                  | 13.8 | 40        |
| 32 | <sup>27</sup> Al MAS NMR Studies of HBEA Zeolite at Low to High Magnetic Fields. Journal of Physical<br>Chemistry C, 2017, 121, 12849-12854.                                                                        | 3.1  | 37        |
| 33 | Kinetic Coupling of Water Splitting and Photoreforming on SrTiO <sub>3</sub> -Based Photocatalysts.<br>ACS Catalysis, 2018, 8, 2902-2913.                                                                           | 11.2 | 36        |
| 34 | Aqueous Phase Hydrodeoxygenation of Phenol over Ni <sub>3</sub> P-CePO <sub>4</sub> Catalysts.<br>Industrial & Engineering Chemistry Research, 2018, 57, 10216-10225.                                               | 3.7  | 36        |
| 35 | Importance of Methane Chemical Potential for Its Conversion to Methanol on Cuâ€Exchanged<br>Mordenite. Chemistry - A European Journal, 2020, 26, 7563-7567.                                                         | 3.3  | 31        |
| 36 | Elementary Steps of Faujasite Formation Followed by in Situ Spectroscopy. Chemistry of Materials,<br>2018, 30, 888-897.                                                                                             | 6.7  | 29        |

DONALD M CAMAIONI

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Palladium atalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds. Angewandte Chemie -<br>International Edition, 2018, 57, 3747-3751.                                                        | 13.8 | 27        |
| 38 | Differences in Mechanism and Rate of Zeolite-Catalyzed Cyclohexanol Dehydration in Apolar and Aqueous Phase. ACS Catalysis, 2021, 11, 2879-2888.                                                    | 11.2 | 26        |
| 39 | Hydronium-Ion-Catalyzed Elimination Pathways of Substituted Cyclohexanols in Zeolite H-ZSM5. ACS<br>Catalysis, 2017, 7, 7822-7829.                                                                  | 11.2 | 22        |
| 40 | Directing the Rateâ€Enhancement for Hydronium Ion Catalyzed Dehydration via Organization of<br>Alkanols in Nanoscopic Confinements. Angewandte Chemie - International Edition, 2021, 60, 2304-2311. | 13.8 | 19        |
| 41 | Rate enhancement of phenol hydrogenation on Pt by hydronium ions in the aqueous phase. Journal of<br>Catalysis, 2021, 404, 579-593.                                                                 | 6.2  | 16        |
| 42 | Hydrogen Bonding Enhances the Electrochemical Hydrogenation of Benzaldehyde in the Aqueous<br>Phase. Angewandte Chemie, 2021, 133, 294-300.                                                         | 2.0  | 12        |
| 43 | Palladiumâ€Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds. Angewandte Chemie, 2018, 130, 3809-3813.                                                                                | 2.0  | 11        |
| 44 | The Critical Role of Reductive Steps in the Nickel atalyzed Hydrogenolysis and Hydrolysis of Aryl<br>Ether Câ^'O Bonds. Angewandte Chemie, 2020, 132, 1461-1465.                                    | 2.0  | 6         |
| 45 | Directing the Rateâ€Enhancement for Hydronium Ion Catalyzed Dehydration via Organization of<br>Alkanols in Nanoscopic Confinements. Angewandte Chemie, 2021, 133, 2334-2341.                        | 2.0  | 4         |
| 46 | Importance of Methane Chemical Potential for Its Conversion to Methanol on Cuâ€exchanged<br>Mordenite. Chemistry - A European Journal, 2020, 26, 7515-7515.                                         | 3.3  | 3         |
| 47 | Controlling Reaction Routes in Nobleâ€Metalâ€Catalyzed Conversion of Aryl Ethers. Angewandte Chemie -<br>International Edition, 2022, 61, .                                                         | 13.8 | 3         |
| 48 | Controlling Reaction Routes in Nobleâ€Metalâ€Catalyzed Conversion of Aryl Ethers. Angewandte Chemie,<br>0, , .                                                                                      | 2.0  | 2         |