Mark H Schoenfisch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3454551/publications.pdf

Version: 2024-02-01

20817 22832 13,751 164 60 citations h-index papers

g-index 165 165 165 12923 docs citations times ranked citing authors all docs

112

#	Article	IF	CITATIONS
1	Role of Nitric Oxide-Releasing Glycosaminoglycans in Wound Healing. ACS Biomaterials Science and Engineering, 2022, 8, 2537-2552.	5.2	9
2	Antibacterial activity of nitric oxideâ€releasing carboxymethylcellulose against periodontal pathogens. Journal of Biomedical Materials Research - Part A, 2021, 109, 713-721.	4.0	3
3	Exogenous Nitric Oxide Improves Antibiotic Susceptibility in Resistant Bacteria. ACS Infectious Diseases, 2021, 7, 23-33.	3.8	51
4	Theranostic Activity of Nitric Oxide-Releasing Carbon Quantum Dots. Bioconjugate Chemistry, 2021, 32, 367-375.	3.6	13
5	Antimicrobial effects of nitric oxide in murine models of Klebsiella pneumonia. Redox Biology, 2021, 39, 101826.	9.0	32
6	Combination of Nitric Oxide Release and Surface Texture for Mitigating the Foreign Body Response. ACS Biomaterials Science and Engineering, 2021, 7, 2444-2452.	5.2	6
7	Nitric Oxide-Releasing Hyaluronic Acid as an Antibacterial Agent for Wound Therapy. Biomacromolecules, 2021, 22, 867-879.	5.4	19
8	Mode of Nitric Oxide Delivery Affects Antibacterial Action. ACS Biomaterials Science and Engineering, 2020, 6, 433-441.	5.2	40
9	<i>Pseudomonas aeruginosa</i> Biofilm Eradication via Nitric Oxide-Releasing Cyclodextrins. ACS Infectious Diseases, 2020, 6, 1940-1950.	3.8	22
10	Antibiofilm and mucolytic action of nitric oxide delivered via gas or macromolecular donor using in vitro and ex vivo models. Journal of Cystic Fibrosis, 2020, 19, 1004-1010.	0.7	14
11	Antibacterial action of nitric oxide-releasing hyperbranched polymers against ex vivo dental biofilms. Dental Materials, 2020, 36, 635-644.	3.5	11
12	In Vivo Antibacterial Efficacy of Nitric Oxide-Releasing Hyperbranched Polymers against <i>Porphyromonas gingivalis</i> . Molecular Pharmaceutics, 2019, 16, 4017-4023.	4.6	8
13	Electrochemical Nitric Oxide Sensors: Principles of Design and Characterization. Chemical Reviews, 2019, 119, 11551-11575.	47.7	88
14	Nitric Oxide-Releasing Alginates as Mucolytic Agents. ACS Biomaterials Science and Engineering, 2019, 5, 3409-3418.	5.2	13
15	Selective and Sensocompatible Electrochemical Nitric Oxide Sensor with a Bilaminar Design. ACS Sensors, 2019, 4, 1766-1773.	7.8	18
16	Antibiofilm Efficacy of Nitric Oxide-Releasing Alginates against Cystic Fibrosis Bacterial Pathogens. ACS Infectious Diseases, 2019, 5, 1327-1335.	3.8	35
17	Extended Nitric Oxide-Releasing Polyurethanes via <i>S</i> -Nitrosothiol-Modified Mesoporous Silica Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12216-12223.	8.0	40
18	Long-Term Accurate Continuous Glucose Biosensors via Extended Nitric Oxide Release. ACS Sensors, 2019, 4, 3257-3264.	7.8	21

#	Article	IF	Citations
19	Nitric oxide diffusion through cystic fibrosis-relevant media and lung tissue. RSC Advances, 2019, 9, 40176-40183.	3.6	6
20	A direct and selective electrochemical hydrogen sulfide sensor. Analytica Chimica Acta, 2019, 1045, 67-76.	5.4	49
21	Nitric Oxide Therapy for Diabetic Wound Healing. Advanced Healthcare Materials, 2019, 8, e1801210.	7.6	253
22	Effect of Phosphorylated Chitosan on Dentin Erosion: An in vitro Study. Caries Research, 2018, 52, 378-386.	2.0	17
23	Mammalian target of rapamycin regulates a hyperresponsive state in pulmonary neutrophils late after burn injury. Journal of Leukocyte Biology, 2018, 103, 909-918.	3.3	17
24	Catalytic selectivity of metallophthalocyanines for electrochemical nitric oxide sensing. Electrochimica Acta, 2018, 273, 98-104.	5.2	34
25	Direct Electrochemical Sensing of Hydrogen Sulfide without Sulfur Poisoning. Analytical Chemistry, 2018, 90, 5194-5200.	6.5	67
26	Nitric Oxide-Releasing Alginates. Biomacromolecules, 2018, 19, 1189-1197.	5.4	36
27	Antibacterial Activity of Nitric Oxide-Releasing Hyperbranched Polyamidoamines. Bioconjugate Chemistry, 2018, 29, 35-43.	3.6	43
28	Influence of diabetes on the foreign body response to nitric oxide-releasing implants. Biomaterials, 2018, 157, 76-85.	11.4	26
29	An experimental murine model to study periodontitis. Nature Protocols, 2018, 13, 2247-2267.	12.0	177
30	Fluid heterogeneity detection based on the asymptotic distribution of the time-averaged mean squared displacement in single particle tracking experiments. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 445601.	2.1	6
31	Nitric Oxide-Releasing Cyclodextrins. Journal of the American Chemical Society, 2018, 140, 14178-14184.	13.7	81
32	Nitric Oxide-Releasing Hyperbranched Polyaminoglycosides for Antibacterial Therapy. ACS Applied Bio Materials, 2018, 1, 1066-1073.	4.6	27
33	Nitric Oxide–Releasing Macromolecular Scaffolds for Antibacterial Applications. Advanced Healthcare Materials, 2018, 7, e1800155.	7.6	124
34	Role of Nitric Oxide-Releasing Chitosan Oligosaccharides on Mucus Viscoelasticity. ACS Biomaterials Science and Engineering, 2017, 3, 1017-1026.	5 . 2	25
35	Selective monophosphorylation of chitosan via phosphorus oxychloride. Polymer Chemistry, 2017, 8, 2552-2558.	3.9	11
36	Anticancer potency of nitric oxide-releasing liposomes. RSC Advances, 2017, 7, 53236-53246.	3.6	14

#	Article	lF	Citations
37	Controlled Release of Nitric Oxide from Liposomes. ACS Biomaterials Science and Engineering, 2017, 3, 2136-2143.	5.2	36
38	In Vivo Chemical Sensors: Role of Biocompatibility on Performance and Utility. Analytical Chemistry, 2017, 89, 276-299.	6.5	62
39	Design Considerations for Silica-Particle-Doped Nitric-Oxide-Releasing Polyurethane Glucose Biosensor Membranes. ACS Sensors, 2017, 2, 140-150.	7.8	24
40	Nitric Oxide Permselectivity in Electropolymerized Films for Sensing Applications. ACS Sensors, 2016, 1, 1453-1461.	7.8	29
41	Direct detection of blood nitric oxide reveals a burn-dependent decrease of nitric oxide in response to Pseudomonas aeruginosa infection. Burns, 2016, 42, 1522-1527.	1.9	13
42	S-Nitrosothiol-modified hyperbranched polyesters. Polymer Chemistry, 2016, 7, 7161-7169.	3.9	10
43	Functionalized Mesoporous Silica via an Aminosilane Surfactant Ion Exchange Reaction: Controlled Scaffold Design and Nitric Oxide Release. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2220-2231.	8.0	55
44	Active Release of Nitric Oxide-Releasing Dendrimers from Electrospun Polyurethane Fibers. ACS Biomaterials Science and Engineering, 2016, 2, 426-437.	5.2	42
45	Anti-biofilm action of nitric oxide-releasing alkyl-modified poly(amidoamine) dendrimers against Streptococcus mutans. Acta Biomaterialia, 2016, 29, 198-205.	8.3	72
46	-nitrosothiol-modified hyperbranched polyesters. Polymer Chemistry, 2016, 7, 7161-7169.	3.9	0
47	Dual action antimicrobial surfaces via combined nitric oxide and silver release. Journal of Biomedical Materials Research - Part A, 2015, 103, 1974-1984.	4.0	19
48	Disruption and eradication of <i>P. aeruginosa </i> biofilms using nitric oxide-releasing chitosan oligosaccharides. Biofouling, 2015, 31, 775-787.	2.2	42
49	$\langle i \rangle S \langle i \rangle$ -Nitrosothiol Analysis via Photolysis and Amperometric Nitric Oxide Detection in a Microfluidic Device. Analytical Chemistry, 2015, 87, 3171-3176.	6.5	21
50	Kinetic-dependent Killing of Oral Pathogens with Nitric Oxide. Journal of Dental Research, 2015, 94, 1092-1098.	5.2	29
51	Anti-Biofilm Efficacy of Dual-Action Nitric Oxide-Releasing Alkyl Chain Modified Poly(amidoamine) Dendrimers. Molecular Pharmaceutics, 2015, 12, 1573-1583.	4.6	65
52	Preclinical Performance Evaluation of Percutaneous Glucose Biosensors. Journal of Diabetes Science and Technology, 2015, 9, 978-984.	2.2	6
53	Antibacterial Action of Nitric Oxide-Releasing Chitosan Oligosaccharides against Pseudomonas aeruginosa under Aerobic and Anaerobic Conditions. Antimicrobial Agents and Chemotherapy, 2015, 59, 6506-6513.	3.2	42
54	Encapsulation of N-Diazeniumdiolates within Liposomes for Enhanced Nitric Oxide Donor Stability and Delivery. Molecular Pharmaceutics, 2015, 12, 3569-3574.	4.6	42

#	Article	IF	CITATIONS
55	S -Nitrosothiol-modified nitric oxide-releasing chitosan oligosaccharides as antibacterial agents. Acta Biomaterialia, 2015, 12, 62-69.	8.3	66
56	Bioburden after Staphylococcus aureus Inoculation in Type 1 Diabetic Rats Undergoing Internal Fixation. Plastic and Reconstructive Surgery, 2014, 134, 412e-419e.	1.4	5
57	Nitric oxide-releasing chitosan oligosaccharides as antibacterial agents. Biomaterials, 2014, 35, 1716-1724.	11.4	136
58	In Vivo Analytical Performance of Nitric Oxide-Releasing Glucose Biosensors. Analytical Chemistry, 2014, 86, 7141-7149.	6.5	38
59	Antibacterial Efficacy of Exogenous Nitric Oxide on Periodontal Pathogens. Journal of Dental Research, 2014, 93, 1089-1094.	5.2	51
60	Superhydrophobic nitric oxide-releasing xerogels. Acta Biomaterialia, 2014, 10, 3442-3448.	8.3	30
61	Nitric Oxide-Releasing Quaternary Ammonium-Modified Poly(amidoamine) Dendrimers as Dual Action Antibacterial Agents. Bioconjugate Chemistry, 2014, 25, 918-927.	3.6	76
62	Nitric oxide-releasing silica nanoparticles with varied surface hydrophobicity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 454, 144-151.	4.7	12
63	O2-Protected diazeniumdiolate-modified silica nanoparticles for extended nitric oxide release from dental composites. Biomaterials Science, 2013, 1, 456.	5.4	26
64	Nitric Oxide-Releasing Silica Nanoparticle-Doped Polyurethane Electrospun Fibers. ACS Applied Materials & Samp; Interfaces, 2013, 5, 7956-7964.	8.0	43
65	Shape―and Nitric Oxide Fluxâ€Dependent Bactericidal Activity of Nitric Oxideâ€Releasing Silica Nanorods. Small, 2013, 9, 2189-2198.	10.0	61
66	Nitric Oxide-Releasing Amphiphilic Poly(amidoamine) (PAMAM) Dendrimers as Antibacterial Agents. Biomacromolecules, 2013, 14, 3589-3598.	5.4	114
67	Nitric oxide flux-dependent bacterial adhesion and viability at fibrinogen-coated surfaces. Biomaterials Science, 2013, 1, 1151.	5.4	19
68	Inaccuracies of Nitric Oxide Measurement Methods in Biological Media. Analytical Chemistry, 2013, 85, 1957-1963.	6.5	105
69	Biocompatible Materials for Continuous Glucose Monitoring Devices. Chemical Reviews, 2013, 113, 2528-2549.	47.7	276
70	Nitric Oxide-Releasing Xerogels Synthesized from <i>N</i> -Diazeniumdiolate-Modified Silane Precursors. ACS Applied Materials & Interfaces, 2013, 5, 4904-4912.	8.0	14
71	Microfluidic Amperometric Sensor for Analysis of Nitric Oxide in Whole Blood. Analytical Chemistry, 2013, 85, 6066-6072.	6.5	47
72	Fabrication of Nitric Oxide-Releasing Porous Polyurethane Membranes-Coated Needle-type Implantable Glucose Biosensors. Analytical Chemistry, 2013, 85, 10488-10494.	6.5	57

#	Article	IF	CITATIONS
73	Role of Size and Shape on Biofilm Eradication for Nitric Oxide-Releasing Silica Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2013, 5, 9322-9329.	8.0	182
74	Dual Action Antimicrobials: Nitric Oxide Release from Quaternary Ammonium-Functionalized Silica Nanoparticles. Biomacromolecules, 2012, 13, 3334-3342.	5.4	113
75	Visible Photolysis and Amperometric Detection of <i>S</i> -Nitrosothiols. Analytical Chemistry, 2012, 84, 851-856.	6.5	19
76	Nitric Oxide-Releasing Dendrimers as Antibacterial Agents. Biomacromolecules, 2012, 13, 3343-3354.	5.4	121
77	Examination of bacterial resistance to exogenous nitric oxide. Nitric Oxide - Biology and Chemistry, 2012, 26, 169-173.	2.7	154
78	Nitric oxide release: Part I. Macromolecular scaffolds. Chemical Society Reviews, 2012, 41, 3731.	38.1	402
79	Nitric oxide release: Part II. Therapeutic applications. Chemical Society Reviews, 2012, 41, 3742.	38.1	784
80	Nitric oxide release: Part III. Measurement and reporting. Chemical Society Reviews, 2012, 41, 3753.	38.1	280
81	Local delivery of nitric oxide: Targeted delivery of therapeutics to bone and connective tissues. Advanced Drug Delivery Reviews, 2012, 64, 1177-1188.	13.7	110
82	Photoinitiated Nitric Oxide-Releasing Tertiary <i>S</i> -Nitrosothiol-Modified Xerogels. ACS Applied Materials & Samp; Interfaces, 2012, 4, 796-804.	8.0	49
83	Silica Nanoparticle Phytotoxicity to <i>Arabidopsis thaliana</i> I>. Environmental Science & Emp; Technology, 2012, 46, 10247-10254.	10.0	213
84	The effect of nitric oxide surface flux on the foreign body response to subcutaneous implants. Biomaterials, 2012, 33, 6305-6312.	11.4	56
85	Increased <i>In Vivo</i> Glucose Recovery via Nitric Oxide Release. Analytical Chemistry, 2011, 83, 1180-1184.	6.5	25
86	Nitric Oxide-Releasing Electrospun Polymer Microfibers. ACS Applied Materials & Samp; Interfaces, 2011, 3, 426-432.	8.0	47
87	St $\tilde{A}\P$ ber Synthesis of Nitric Oxide-Releasing <i>S</i> -Nitrosothiol-Modified Silica Particles. Chemistry of Materials, 2011, 23, 1727-1735.	6.7	89
88	Structurally Diverse Nitric Oxide-Releasing Poly(propylene imine) Dendrimers. Chemistry of Materials, 2011, 23, 4227-4233.	6.7	64
89	Antibacterial Fluorinated Silica Colloid Superhydrophobic Surfaces. Langmuir, 2011, 27, 9597-9601.	3.5	286
90	Synthesis of nitric oxide-releasing polyurethanes with S-nitrosothiol-containing hard and soft segments. Polymer Chemistry, 2011, 2, 906.	3.9	48

#	Article	IF	Citations
91	Decreasing Bacterial Colonization of External Fixation Pins Through Nitric Oxide Release Coatings. Journal of Orthopaedic Trauma, 2011, 25, 432-437.	1.4	50
92	Fabrication of nitric oxide-releasing polyurethane glucose sensor membranes. Biosensors and Bioelectronics, 2011, 28, 17-24.	10.1	34
93	Influence of Scaffold Size on Bactericidal Activity of Nitric Oxide-Releasing Silica Nanoparticles. ACS Nano, 2011, 5, 7235-7244.	14.6	121
94	Glucose Sensor Membranes for Mitigating the Foreign Body Response. Journal of Diabetes Science and Technology, 2011, 5, 1052-1059.	2.2	36
95	Nitric Oxide-Releasing Silica Nanoparticle Inhibition of Ovarian Cancer Cell Growth. Molecular Pharmaceutics, 2010, 7, 775-785.	4.6	94
96	Efficacy of surface-generated nitric oxide against <i>Candida albicans</i> adhesion and biofilm formation. Biofouling, 2010, 26, 973-983.	2.2	44
97	Electrochemical Sensors. Analytical Chemistry, 2010, 82, 4723-4741.	6.5	243
98	Degradable Nitric Oxide-Releasing Biomaterials via Post-Polymerization Functionalization of Cross-Linked Polyesters. Biomacromolecules, 2010, 11, 3208-3215.	5.4	61
99	Synergy of Nitric Oxide and Silver Sulfadiazine against Gram-Negative, Gram-Positive, and Antibiotic-Resistant Pathogens. Molecular Pharmaceutics, 2010, 7, 2289-2296.	4.6	43
100	Calcium Dependence of Fibrin Nanomechanics: The γ1 Calcium Mediates the Unfolding of Fibrinogen Induced by Force Applied to the "Aâ^'a―Bond. Langmuir, 2010, 26, 14716-14722.	3.5	10
101	Reduced ischemia/reperfusion injury via glutathione-initiated nitric oxide-releasing dendrimers. Nitric Oxide - Biology and Chemistry, 2010, 22, 30-36.	2.7	56
102	Electrochemical nitric oxide sensors for physiological measurements. Chemical Society Reviews, 2010, 39, 1925.	38.1	151
103	Atomic force microscope studies of fibrinogen adsorption. Analyst, The, 2010, 135, 1201.	3.5	25
104	Morphological analysis of the antimicrobial action of nitric oxide on Gram-negative pathogens using atomic force microscopy. Acta Biomaterialia, 2009, 5, 1405-1415.	8.3	86
105	Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials, 2009, 30, 2782-2789.	11.4	343
106	Nitric oxide-releasing S-nitrosothiol-modified xerogels. Biomaterials, 2009, 30, 4494-4502.	11.4	103
107	Competitive Formation of $\langle i \rangle N \langle i \rangle$ -Diazeniumdiolates and $\langle i \rangle N \langle i \rangle$ -Nitrosamines via Anaerobic Reactions of Polyamines with Nitric Oxide. Organic Letters, 2009, 11, 5462-5465.	4.6	21
108	Kinetics of the Multistep Rupture of Fibrin â€~A-a' Polymerization Interactions Measured Using Atomic Force Microscopy. Biophysical Journal, 2009, 97, 2820-2828.	0.5	20

#	Article	IF	CITATIONS
109	Analytical Chemistry of Nitric Oxide. Annual Review of Analytical Chemistry, 2009, 2, 409-433.	5.4	253
110	Reduced bacterial adhesion to fibrinogen-coated substrates via nitric oxide release. Biomaterials, 2008, 29, 4039-4044.	11.4	94
111	Electrochemical Sensors. Analytical Chemistry, 2008, 80, 4499-4517.	6.5	203
112	Inorganic/Organic Hybrid Silica Nanoparticles as a Nitric Oxide Delivery Scaffold. Chemistry of Materials, 2008, 20, 239-249.	6.7	98
113	Complexity of "Aâ^'a―Knobâ^'Hole Fibrin Interaction Revealed by Atomic Force Spectroscopy. Langmuir, 2008, 24, 4979-4988.	3.5	42
114	Xerogel Optical Sensor Films for Quantitative Detection of Nitroxyl. Analytical Chemistry, 2008, 80, 1247-1254.	6.5	42
115	Quantitative Method for Determining the Lateral Strength of Bacterial Adhesion and Application for Characterizing Adhesion Kinetics. Langmuir, 2008, 24, 4700-4707.	3.5	21
116	Fluorinated Xerogel-Derived Microelectrodes for Amperometric Nitric Oxide Sensing. Analytical Chemistry, 2008, 80, 6850-6859.	6.5	91
117	Influence of Glutathione and its Derivatives on Fibrin Polymerization. Biomacromolecules, 2008, 9, 1876-1882.	5.4	11
118	S-Nitrosothiol-Modified Dendrimers as Nitric Oxide Delivery Vehicles. Biomacromolecules, 2008, 9, 834-841.	5.4	118
119	Bactericidal Efficacy of Nitric Oxide-Releasing Silica Nanoparticles. ACS Nano, 2008, 2, 235-246.	14.6	307
120	Cytotoxicity of Polypropylenimine Dendrimer Conjugates on Cultured Endothelial Cells. Biomacromolecules, 2007, 8, 3853-3859.	5.4	148
121	Water-Soluble Nitric Oxide-Releasing Gold Nanoparticles. Langmuir, 2007, 23, 4938-4943.	3.5	122
122	Synthesis of Nitric Oxide-Releasing Silica Nanoparticles. Journal of the American Chemical Society, 2007, 129, 4612-4619.	13.7	192
123	Antibacterial nitric oxide-releasing xerogels: Cell viability and parallel plate flow cell adhesion studies. Biomaterials, 2007, 28, 1948-1956.	11.4	98
124	Surface-dependent fibrinopeptide A accessibility to thrombin. Acta Biomaterialia, 2007, 3, 663-668.	8.3	21
125	Reduced foreign body response at nitric oxide-releasing subcutaneous implants. Biomaterials, 2007, 28, 4571-4580.	11.4	138
126	Planar nitric oxide (NO)-selective ultramicroelectrode sensor for measuring localized NO surface concentrations at xerogel microarrays. Analyst, The, 2006, 131, 48-54.	3.5	11

#	Article	lF	CITATIONS
127	Improving the biocompatibility of in vivo sensors via nitric oxide release. Analyst, The, 2006, 131, 609.	3.5	60
128	Changes in Adsorbed Fibrinogen upon Conversion to Fibrin. Langmuir, 2006, 22, 5115-5121.	3. 5	57
129	Reducing implant-related infections: active release strategies. Chemical Society Reviews, 2006, 35, 780.	38.1	1,077
130	Nitric Oxide-Releasing Xerogel-Based Fiber-Optic pH Sensors. Analytical Chemistry, 2006, 78, 7461-7466.	6.5	19
131	Dendrimers as a Scaffold for Nitric Oxide Release. Journal of the American Chemical Society, 2006, 128, 8265-8271.	13.7	146
132	Poly(vinylpyrrolidone)-doped nitric oxide-releasing xerogels as glucose biosensor membranes. Biosensors and Bioelectronics, 2006, 22, 306-312.	10.1	20
133	Miniaturized glucose biosensor modified with a nitric oxide-releasing xerogel microarray. Biosensors and Bioelectronics, 2005, 21, 749-757.	10.1	35
134	Nitric oxide-releasing sol–gels as antibacterial coatings for orthopedic implants. Biomaterials, 2005, 26, 917-924.	11.4	185
135	In vitro cytotoxicity of nitric oxide-releasing sol–gel derived materials. Biomaterials, 2005, 26, 4405-4415.	11.4	49
136	Inhibition of implant-associated infections via nitric oxide release. Biomaterials, 2005, 26, 6984-6990.	11.4	160
137	Sol–gel derived nitric oxide-releasing oxygen sensors. Analyst, The, 2005, 130, 206-212.	3.5	23
138	Influence of Antibody Immobilization Strategy on Molecular Recognition Force Microscopy Measurements. Langmuir, 2005, 21, 3054-3060.	3 . 5	33
139	Nitric Oxide-Releasing Xerogel Microarrays Prepared with Surface-Tailored Poly(dimethylsiloxane) Templates. Chemistry of Materials, 2005, 17, 3288-3296.	6.7	10
140	An Interactive Analytical Chemistry Summer Camp for Middle School Girls. Journal of Chemical Education, 2005, 82, 1486.	2.3	18
141	Fibrin Proliferation at Model Surfaces:  Influence of Surface Properties. Langmuir, 2005, 21, 1691-1694.	3.5	48
142	Synthesis of Nitric Oxide-Releasing Gold Nanoparticles. Journal of the American Chemical Society, 2005, 127, 9362-9363.	13.7	123
143	Solâ^'Gel Derived Amperometric Nitric Oxide Microsensor. Analytical Chemistry, 2005, 77, 3494-3501.	6.5	51
144	Solâ^'Gel Derived Potentiometric pH Sensors. Analytical Chemistry, 2005, 77, 848-853.	6.5	23

#	Article	IF	Citations
145	Poly(vinyl chloride)-Coated Solâ^'Gels for Studying the Effects of Nitric Oxide Release on Bacterial Adhesion. Biomacromolecules, 2004, 5, 2034-2041.	5.4	40
146	Antibacterial Properties of Nitric Oxide-Releasing Solâ^'Gel Microarrays. Biomacromolecules, 2004, 5, 2493-2495.	5.4	33
147	Nitric Oxide-Releasing Solâ^Gel Particle/Polyurethane Glucose Biosensors. Analytical Chemistry, 2004, 76, 4543-4549.	6.5	68
148	Influence of Surfactants and Antibody Immobilization Strategy on Reducing Nonspecific Protein Interactions for Molecular Recognition Force Microscopy. Langmuir, 2004, 20, 9729-9735.	3.5	59
149	Synthesis and Characterization of Nitric Oxide-Releasing Solâ^'Gel Microarrays. Langmuir, 2004, 20, 10296-10302.	3.5	40
150	Antibacterial properties of nitric oxide–releasing solâ€gels. Journal of Biomedical Materials Research - Part A, 2003, 67A, 1276-1283.	4.0	70
151	Direct oriented immobilization of F(ab′) antibody fragments on gold. Analytica Chimica Acta, 2003, 496, 73-80.	5.4	89
152	Preparation of Nitric Oxide (NO)-Releasing Solâ^'Gels for Biomaterial Applications. Chemistry of Materials, 2003, 15, 4193-4199.	6.7	101
153	Surface-Localized Release of Nitric Oxide via Solâ^'Gel Chemistry. Journal of the American Chemical Society, 2003, 125, 6068-6069.	13.7	29
154	Nitric Oxide-Releasing Fluorescence-Based Oxygen Sensing Polymeric Films. Analytical Chemistry, 2002, 74, 5937-5941.	6.5	34
155	Solâ^'Gel Derived Nitric-Oxide Releasing Materials that Reduce Bacterial Adhesion. Journal of the American Chemical Society, 2001, 123, 9712-9713.	13.7	126
156	Preparation and characterization of hydrophobic polymeric films that are thromboresistant via nitric oxide release. Biomaterials, 2000, 21, 9-21.	11.4	205
157	Conversion of a polysaccharide to nitric oxide-releasing form. dual-mechanism anticoagulant activity of diazeniumdiolated heparin. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 751-753.	2.2	21
158	Electrochemical Cleaning of Surface-Confined Carbon Contamination in Self-Assembled Monolayers on Polycrystalline Ag and Au. Langmuir, 2000, 16, 2907-2914.	3.5	22
159	Improving the Thromboresistivity of Chemical Sensors via Nitric Oxide Release:Â Fabrication and in Vivo Evaluation of NO-Releasing Oxygen-Sensing Catheters. Analytical Chemistry, 2000, 72, 1119-1126.	6.5	119
160	Sequestration of Carbonaceous Species within Alkanethiol Self-Assembled Monolayers on Ag by Raman Spectroscopy. Langmuir, 2000, 16, 2902-2906.	3.5	22
161	Effects of Electrolyte and Potential on the in Situ Structure of Alkanethiol Self-Assembled Monolayers on Silver. Langmuir, 1999, 15, 509-517.	3.5	51
162	Surface Enhancement Factors for Ag and Au Surfaces Relative to Pt Surfaces for Monolayers of Thiophenol. Applied Spectroscopy, 1999, 53, 1212-1221.	2.2	141

ā	#	Article	IF	CITATIONS
1	163	Air Stability of Alkanethiol Self-Assembled Monolayers on Silver and Gold Surfaces. Journal of the American Chemical Society, 1998, 120, 4502-4513.	13.7	502
1	164	In situ electrochemistry of Ru(NH3)63+ in a perfused rat heart. Electroanalysis, 1997, 9, 135-140.	2.9	8