
Carol Dobson-Stone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3454051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cerebellar integrity and contributions to cognition in C9orf72-mediated frontotemporal dementia. Cortex, 2022, 149, 73-84.	2.4	2
2	Examining the presence and nature of delusions in Alzheimer's disease and frontotemporal dementia syndromes. International Journal of Geriatric Psychiatry, 2022, 37, .	2.7	4
3	Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Science Advances, 2022, 8, eabm5386.	10.3	68
4	Schizotypal traits across the amyotrophic lateral sclerosis–frontotemporal dementia spectrum: pathomechanistic insights. Journal of Neurology, 2022, , 1.	3.6	0
5	Clinical and Biological Correlates of White Matter Hyperintensities in Patients With Behavioral-Variant Frontotemporal Dementia and Alzheimer Disease. Neurology, 2021, 96, e1743-e1754.	1.1	24
6	Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes. Biological Psychiatry, 2021, 89, 825-835.	1.3	10
7	Rapid in vitro quantification of TDP-43 and FUS mislocalisation for screening of gene variants implicated in frontotemporal dementia and amyotrophic lateral sclerosis. Scientific Reports, 2021, 11, 14881.	3.3	3
8	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	9.0	46
9	The complex relationship between genotype, pathology and phenotype in familial dementia. Neurobiology of Disease, 2020, 145, 105082.	4.4	6
10	Reply: CYLD variants in frontotemporal dementia associated with severe memory impairment in a Portuguese cohort. Brain, 2020, 143, e68-e68.	7.6	4
11	Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis. Scientific Reports, 2020, 10, 12184.	3.3	4
12	Interactions of OXTR rs53576 and emotional trauma on hippocampal volumes and perceived social support in adolescent girls. Psychoneuroendocrinology, 2020, 115, 104635.	2.7	17
13	CYLD is a causative gene for frontotemporal dementia – amyotrophic lateral sclerosis. Brain, 2020, 143, 783-799.	7.6	62
14	Neuroinflammation in frontotemporal dementia. Nature Reviews Neurology, 2019, 15, 540-555.	10.1	159
15	Effect of stress gene-by-environment interactions on hippocampal volumes and cortisol secretion in adolescent girls. Australian and New Zealand Journal of Psychiatry, 2019, 53, 316-325.	2.3	20
16	The underacknowledged PPA-ALS. Neurology, 2019, 92, e1354-e1366.	1.1	29
17	Effect of Fluvoxamine on Amyloid-Î ² Peptide Generation and Memory. Journal of Alzheimer's Disease, 2018, 62, 1777-1787.	2.6	12
18	A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.	7.6	39

2

CAROL DOBSON-STONE

#	Article	IF	CITATIONS
19	Reduced glucocerebrosidase activity in monocytes from patients with Parkinson's disease. Scientific Reports, 2018, 8, 15446.	3.3	82
20	Predicting Development of Amyotrophic Lateral Sclerosis in Frontotemporal Dementia. Journal of Alzheimer's Disease, 2017, 58, 163-170.	2.6	17
21	Finding MAPT Mutations in Frontotemporal Dementia and Other Tauopathies. Methods in Molecular Biology, 2017, 1523, 307-324.	0.9	6
22	Distinct TDP-43 inclusion morphologies in frontotemporal lobar degeneration with and without amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 2017, 5, 76.	5.2	27
23	Role of the Long Non-Coding RNA MAPT-AS1 in Regulation of Microtubule Associated Protein Tau (MAPT) Expression in Parkinson's Disease. PLoS ONE, 2016, 11, e0157924.	2.5	68
24	TDP-43 in the hypoglossal nucleus identifies amyotrophic lateral sclerosis in behavioral variant frontotemporal dementia. Journal of the Neurological Sciences, 2016, 366, 197-201.	0.6	10
25	CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nature Communications, 2016, 7, 11253.	12.8	174
26	Impact of 5-HTTLPR on SSRI serotonin transporter blockade during emotion regulation: A preliminary fMRI study. Journal of Affective Disorders, 2016, 196, 11-19.	4.1	19
27	Serotonin 1B Receptor Gene (HTR1B) Methylation as a Risk Factor for Callous-Unemotional Traits in Antisocial Boys. PLoS ONE, 2015, 10, e0126903.	2.5	28
28	IsCHCHD10Pro34Ser pathogenic for frontotemporal dementia and amyotrophic lateral sclerosis?: Figure 1. Brain, 2015, 138, e385-e385.	7.6	16
29	Effect of PSEN1 mutations on MAPT methylation in early-onset Alzheimer's disease. Current Alzheimer Research, 2015, 12, 745-751.	1.4	9
30	Cerebellar Integrity in the Amyotrophic Lateral Sclerosis - Frontotemporal Dementia Continuum. PLoS ONE, 2014, 9, e105632.	2.5	79
31	DNA methylation of the <i>MAPT</i> gene in Parkinson's disease cohorts and modulation by vitamin E <i>In Vitro</i> . Movement Disorders, 2014, 29, 1606-1614.	3.9	79
32	Polymorphisms in the oxytocin receptor gene are associated with the development of psychopathy. Development and Psychopathology, 2014, 26, 21-31.	2.3	105
33	Methylation of the oxytocin receptor gene and oxytocin blood levels in the development of psychopathy. Development and Psychopathology, 2014, 26, 33-40.	2.3	163
34	TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathologica, 2014, 127, 407-418.	7.7	123
35	A Functional Polymorphism of the <i>MAOA</i> Gene Is Associated with Neural Responses to Induced Anger Control. Journal of Cognitive Neuroscience, 2014, 26, 1418-1427.	2.3	44
36	Variation in the oxytocin receptor gene is associated with increased risk for anxiety, stress and depression in individuals with a history of exposure to early life stress. Journal of Psychiatric Research, 2014, 59, 93-100.	3.1	78

#	Article	IF	CITATIONS
37	The impact of 5-HTTLPR on acute serotonin transporter blockade by escitalopram on emotion processing: Preliminary findings from a randomised, crossover fMRI study. Australian and New Zealand Journal of Psychiatry, 2014, 48, 1115-1125.	2.3	14
38	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	10.2	302
39	P1-039: MAPT METHYLATION IN ALZHEIMER'S DISEASE. , 2014, 10, P317-P318.		3
40	Frontotemporal dementia–amyotrophic lateral sclerosis syndrome locus on chromosome 16p12.1–q12.2: genetic, clinical and neuropathological analysis. Acta Neuropathologica, 2013, 125, 523-533.	7.7	24
41	The association between the oxytocin receptor gene (OXTR) and hypnotizability. Psychoneuroendocrinology, 2013, 38, 1979-1984.	2.7	32
42	The Brain-Derived Neurotrophic Factor Val66Met Polymorphism Predicts Response to Exposure Therapy in Posttraumatic Stress Disorder. Biological Psychiatry, 2013, 73, 1059-1063.	1.3	139
43	Neural substrates of episodic memory dysfunction in behavioural variant frontotemporal dementia with and without C9ORF72 expansions. NeuroImage: Clinical, 2013, 2, 836-843.	2.7	35
44	Endogenous progesterone levels and frontotemporal dementia: modulation of TDP-43 and Tau levels in vitro and treatment of the A315T TARDBP mouse model. DMM Disease Models and Mechanisms, 2013, 6, 1198-204.	2.4	10
45	C9ORF72 Repeat Expansion in Australian and Spanish Frontotemporal Dementia Patients. PLoS ONE, 2013, 8, e56899.	2.5	56
46	An Exploration of the Serotonin System in Antisocial Boys with High Levels of Callous-Unemotional Traits. PLoS ONE, 2013, 8, e56619.	2.5	83
47	CSK3B and MAPT Polymorphisms Are Associated with Grey Matter and Intracranial Volume in Healthy Individuals. PLoS ONE, 2013, 8, e71750.	2.5	8
48	<i>C9ORF72</i> repeat expansion in clinical and neuropathologic frontotemporal dementia cohorts. Neurology, 2012, 79, 995-1001.	1.1	108
49	The contribution of BDNF and 5-HTT polymorphisms and early life stress to the heterogeneity of major depressive disorder: A preliminary study. Australian and New Zealand Journal of Psychiatry, 2012, 46, 55-63.	2.3	30
50	The functional epistasis of 5―HTTLPR and BDNF Val66Met on emotion processing: a preliminary study. Brain and Behavior, 2012, 2, 778-788.	2.2	21
51	Association between serotonin transporter promoter polymorphisms and psychological distress in a diabetic population. Psychiatry Research, 2012, 200, 343-348.	3.3	10
52	A Role for Transcription Factor GTF2IRD2 in Executive Function in Williams-Beuren Syndrome. PLoS ONE, 2012, 7, e47457.	2.5	37
53	Genetic Polymorphisms in Sigma-1 Receptor and Apolipoprotein E Interact to Influence the Severity of Alzheimers Disease. Current Alzheimer Research, 2011, 8, 765-770.	1.4	48
54	Impact of the HTR3A gene with early life trauma on emotional brain networks and depressed mood. Depression and Anxiety, 2010, 27, 752-759.	4.1	69

#	Article	IF	CITATIONS
55	Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration–motor neuron disease. Annals of Neurology, 2010, 68, 639-649.	5.3	168
56	Preliminary Evidence of the Short Allele of the Serotonin Transporter Gene Predicting Poor Response to Cognitive Behavior Therapy in Posttraumatic Stress Disorder. Biological Psychiatry, 2010, 67, 1217-1219.	1.3	98
57	COMT Val108/158Met polymorphism effects on emotional brain function and negativity bias. NeuroImage, 2010, 53, 918-925.	4.2	98
58	A Polymorphism of the MAOA Gene is Associated with Emotional Brain Markers and Personality Traits on an Antisocial Index. Neuropsychopharmacology, 2009, 34, 1797-1809.	5.4	74
59	Brain derived neurotrophic factor Val66Met polymorphism, the five factor model of personality and hippocampal volume: Implications for depressive illness. Human Brain Mapping, 2009, 30, 1246-1256.	3.6	78
60	Disturbances in selective information processing associated with the BDNF Val66Met polymorphism: Evidence from cognition, the P300 and fronto-hippocampal systems. Biological Psychology, 2009, 80, 176-188.	2.2	117
61	THE INTEGRATE MODEL OF EMOTION, THINKING AND SELF REGULATION: AN APPLICATION TO THE "PARADOX OF AGING". Journal of Integrative Neuroscience, 2008, 07, 367-404.	1.7	48
62	Pedigree with frontotemporal lobar degeneration – motor neuron disease and Tar DNA binding protein-43 positive neuropathology: genetic linkage to chromosome 9. BMC Neurology, 2008, 8, 32.	1.8	71
63	Association between BDNF Val66Met polymorphism and trait depression is mediated via resting EEG alpha band activity. Biological Psychology, 2008, 79, 275-284.	2.2	67
64	A GENOTYPE-ENDOPHENOTYPE-PHENOTYPE PATH MODEL OF DEPRESSED MOOD: INTEGRATING COGNITIVE AND EMOTIONAL MARKERS. Journal of Integrative Neuroscience, 2007, 06, 75-104.	1.7	33
65	Choreoacanthocytosis in a Mexican Family. Archives of Neurology, 2007, 64, 1661.	4.5	9
66	INTEGRATING OBJECTIVE GENE-BRAIN-BEHAVIOR MARKERS OF PSYCHIATRIC DISORDERS. Journal of Integrative Neuroscience, 2007, 06, 1-34.	1.7	24
67	Developments in neuroacanthocytosis: Expanding the spectrum of choreatic syndromes. Movement Disorders, 2006, 21, 1794-1805.	3.9	44
68	Associations between theCOMT Val/Metpolymorphism, early life stress, and personality among healthy adults. Neuropsychiatric Disease and Treatment, 2006, 2, 219-225.	2.2	37
69	Familial Temporal Lobe Epilepsy as a Presenting Feature of Choreoacanthocytosis. Epilepsia, 2005, 46, 1256-1263.	5.1	62
70	Identification of a VPS13A founder mutation in French Canadian families with chorea-acanthocytosis. Neurogenetics, 2005, 6, 151-158.	1.4	36
71	Early Clinical Heterogeneity in Choreoacanthocytosis. Archives of Neurology, 2005, 62, 611.	4.5	61
72	Chorein detection for the diagnosis of choreaâ€acanthocytosis. Annals of Neurology, 2004, 56, 299-302.	5.3	186

#	Article	IF	CITATIONS
73	Analysis of the human VPS13 gene family. Genomics, 2004, 84, 536-549.	2.9	190
74	Chorea-acanthocytosis: Clinical and genetic findings in three families from the Arabian peninsula. Movement Disorders, 2003, 18, 403-407.	3.9	22
75	Hailey-Hailey Disease: Molecular and Clinical Characterization of Novel Mutations in the ATP2C1 Gene. Journal of Investigative Dermatology, 2002, 118, 338-343.	0.7	81
76	McLeod neuroacanthocytosis: Genotype and phenotype. Annals of Neurology, 2001, 50, 755-764.	5.3	244
77	A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nature Genetics, 2001, 28, 119-120.	21.4	357
78	Comparison of fluorescent single-strand conformation polymorphism analysis and denaturing high-performance liquid chromatography for detection of EXT1 and EXT2 mutations in hereditary multiple exostoses. European Journal of Human Genetics, 2000, 8, 24-32.	2.8	85
79	Genomic Organization of the Human Gα14 and Gαq Genes and Mutation Analysis in Chorea–Acanthocytosis (CHAC). Genomics, 1999, 57, 84-93.	2.9	25
80	The treA gene of Bacillus subtilis is a suitable reporter gene for the archaeon Methanococcus voltae. FEMS Microbiology Letters, 1998, 164, 237-242.	1.8	2