
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/345358/publications.pdf Version: 2024-02-01

нонхимити

#	Article	IF	CITATIONS
1	Earliest domestication of common millet (<i>Panicum miliaceum</i>) in East Asia extended to 10,000 years ago. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7367-7372.	7.1	614
2	East Asian summer monsoon precipitation variability since the last deglaciation. Scientific Reports, 2015, 5, 11186.	3.3	534
3	Early millet use in northern China. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3726-3730.	7.1	396
4	Phytoliths Analysis for the Discrimination of Foxtail Millet (Setaria italica) and Common Millet (Panicum miliaceum). PLoS ONE, 2009, 4, e4448.	2.5	190
5	The East Asian winter monsoon over the last 15,000 years: its links to high-latitudes and tropical climate systems and complex correlation to the summer monsoon. Quaternary Science Reviews, 2012, 32, 131-142.	3.0	180
6	Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes. Quaternary Science Reviews, 2011, 30, 947-966.	3.0	173
7	Millet noodles in Late Neolithic China. Nature, 2005, 437, 967-968.	27.8	171
8	Rice domestication and climatic change: phytolith evidence from East China. Boreas, 2002, 31, 378-385.	2.4	170
9	Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6486-6491.	7.1	169
10	East Asian pollen database: modern pollen distribution and its quantitative relationship with vegetation and climate. Journal of Biogeography, 2014, 41, 1819-1832.	3.0	126
11	Phytoliths of common grasses in the coastal environments of southeastern USA. Estuarine, Coastal and Shelf Science, 2003, 58, 587-600.	2.1	120
12	Phytoliths as a tool for investigations of agricultural origins and dispersals around the world. Journal of Archaeological Science, 2016, 68, 32-45.	2.4	119
13	The â€~Mediaeval Warm Period' drought recorded in Lake Huguangyan, tropical South China. Holocene, 2002, 12, 511-516.	1.7	118
14	Evidence for northeastern Tibetan Plateau uplift between 25 and 20 Ma in the sedimentary archive of the Xining Basin, Northwestern China. Earth and Planetary Science Letters, 2012, 317-318, 185-195.	4.4	116
15	Morphological variations of lobate phytoliths from grasses in China and the south-eastern United States. Diversity and Distributions, 2002, 9, 73-87.	4.1	115
16	Earliest tea as evidence for one branch of the Silk Road across the Tibetan Plateau. Scientific Reports, 2016, 6, 18955.	3.3	105
17	The early Holocene optimum inferred from a high-resolution pollen record of Huguangyan Maar Lake in southern China. Science Bulletin, 2007, 52, 2829-2836.	1.7	102
18	A 1200-year proxy record of hurricanes and fires from the Gulf of Mexico coast: Testing the hypothesis of hurricane–fire interactions. Quaternary Research, 2008, 69, 29-41.	1.7	100

#	Article	IF	CITATIONS
19	Prehistoric demographic fluctuations in China inferred from radiocarbon data and their linkage with climate change over the past 50,000 years. Quaternary Science Reviews, 2014, 98, 45-59.	3.0	99
20	Synchronous 500-year oscillations of monsoon climate and human activity in Northeast Asia. Nature Communications, 2019, 10, 4105.	12.8	96
21	Phytolith Analysis for Differentiating between Foxtail Millet (Setaria italica) and Green Foxtail (Setaria viridis). PLoS ONE, 2011, 6, e19726.	2.5	90
22	The Huguang maar lake—a high-resolution record of palaeoenvironmental and palaeoclimatic changes over the last 78,000 years from South China. Quaternary International, 2004, 122, 85-107.	1.5	87
23	Comparison of climatic threshold of geographical distribution between dominant plants and surface pollen in China. Science in China Series D: Earth Sciences, 2008, 51, 1107-1120.	0.9	87
24	From the modern to the archaeological: starch grains from millets and their wild relatives in China. Journal of Archaeological Science, 2012, 39, 247-254.	2.4	86
25	Diatomâ€based inference of variations in the strength of Asian winter monsoon winds between 17,500 and 6000 calendar years B.P Journal of Geophysical Research, 2008, 113, .	3.3	84
26	Carbon sequestration within millet phytoliths from dry-farming of crops in China. Science Bulletin, 2011, 56, 3451-3456.	1.7	83
27	Spatial pattern of <i>Abies</i> and <i>Picea</i> surface pollen distribution along the elevation gradient in the Qinghai–Tibetan Plateau and Xinjiang, China. Boreas, 2008, 37, 254-262.	2.4	80
28	A ~30,000-year record of environmental changes inferred from Lake Chen Co, Southern Tibet. Journal of Paleolimnology, 2009, 42, 343-358.	1.6	77
29	Barnyard grasses were processed with rice around 10000 years ago. Scientific Reports, 2015, 5, 16251.	3.3	77
30	Early Mixed Farming of Millet and Rice 7800 Years Ago in the Middle Yellow River Region, China. PLoS ONE, 2012, 7, e52146.	2.5	75
31	Middle-Holocene sea-level fluctuations interrupted the developing Hemudu culture in the lower Yangtze River, China. Quaternary Science Reviews, 2018, 188, 90-103.	3.0	74
32	500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record. Scientific Reports, 2014, 4, 3611.	3.3	73
33	Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal. Journal of Geophysical Research, 2011, 116, .	3.3	72
34	Prehistoric evolution of the dualistic structure mixed rice and millet farming in China. Holocene, 2017, 27, 1885-1898.	1.7	70
35	Sediment Fluxes and Varve Formation in Sihailongwan, a Maar Lake from Northeastern China. Journal of Paleolimnology, 2005, 34, 311-324.	1.6	69
36	Starch grain analysis reveals function of grinding stone tools at Shangzhai site, Beijing. Science in China Series D: Earth Sciences, 2009, 52, 1164-1171.	0.9	68

#	Article	IF	CITATIONS
37	The ancient dispersal of millets in southern China: New archaeological evidence. Holocene, 2018, 28, 34-43.	1.7	68
38	Bulliform Phytolith Research in Wild and Domesticated Rice Paddy Soil in South China. PLoS ONE, 2015, 10, e0141255.	2.5	63
39	Pollen-inferred climate changes and vertical shifts of alpine vegetation belts on the northern slope of the Nyainqentanglha Mountains (central Tibetan Plateau) since 8.4 kyr BP. Holocene, 2011, 21, 939-950.	1.7	61
40	Distribution of soil phytolith-occluded carbon in the Chinese Loess Plateau and its implications for silica–carbon cycles. Plant and Soil, 2014, 374, 223-232.	3.7	61
41	Asynchronous marine-terrestrial signals of the last deglacial warming in East Asia associated with low- and high-latitude climate changes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9657-9662.	7.1	60
42	Distribution of carbon isotope composition of modern soils on the Qinghai-Tibetan Plateau. Biogeochemistry, 2004, 70, 275-299.	3.5	58
43	Marked ecological shifts during 6.2–2.4 Ma revealed by a terrestrial molluscan record from the Chinese Red Clay Formation and implication for palaeoclimatic evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 233, 287-299.	2.3	58
44	30Â000-Year vegetation and climate change around the East China Sea shelf inferred from a high-resolution pollen record. Quaternary International, 2010, 227, 53-60.	1.5	57
45	Variations in organic matter composition in sediments from Lake Huguang Maar (Huguangyan), south China during the last 68 ka: implications for environmental and climatic change. Organic Geochemistry, 2003, 34, 1497-1515.	1.8	56
46	Phytolith evidence for rice cultivation and spread in Mid‣ate Neolithic archaeological sites in central North China. Boreas, 2010, 39, 592-602.	2.4	54
47	Rice bulliform phytoliths reveal the process of rice domestication in the Neolithic Lower Yangtze River region. Quaternary International, 2016, 426, 126-132.	1.5	54
48	Human influence as a potential source of bias in pollen-based quantitative climate reconstructions. Quaternary Science Reviews, 2014, 99, 112-121.	3.0	53
49	Periodicity of Holocene climatic variations in the Huguangyan Maar Lake. Science Bulletin, 2000, 45, 1712-1717.	1.7	51
50	Latitudinal variations of CPI values of long-chain n-alkanes in surface soils: Evidence for CPI as a proxy of aridity. Science China Earth Sciences, 2012, 55, 1134-1146.	5.2	51
51	A 1000-yr record of environmental change in NE China indicated by diatom assemblages from maar lake Erlongwan. Quaternary Research, 2012, 78, 24-34.	1.7	47
52	New methods and progress in research on the origins and evolution of prehistoric agriculture in China. Science China Earth Sciences, 2017, 60, 2141-2159.	5.2	47
53	Phytolith analysis for the identification of barnyard millet (Echinochloa sp.) and its implications. Archaeological and Anthropological Sciences, 2018, 10, 61-73.	1.8	46
54	Temporal changes of mixed millet and rice agriculture in Neolithic-Bronze Age Central Plain, China: Archaeobotanical evidence from the Zhuzhai site. Holocene, 2018, 28, 738-754.	1.7	46

HOUYUAN LU

#	Article	IF	CITATIONS
55	Phytolith and diatom evidence for rice exploitation and environmental changes during the early mid-Holocene in the Yangtze Delta. Quaternary Research, 2016, 86, 304-315.	1.7	41
56	The first discovery of Neolithic rice remains in eastern Taiwan: phytolith evidence from the Chaolaiqiao site. Archaeological and Anthropological Sciences, 2018, 10, 1477-1484.	1.8	40
57	New evidence of agricultural activity and environmental change associated with the ancient Loulan kingdom, China, around 1500 years ago. Holocene, 2012, 22, 53-61.	1.7	37
58	Influence of the ratio of planktonic to benthic diatoms on lacustrine organic matter δ13C from Erlongwan maar lake, northeast China. Organic Geochemistry, 2013, 54, 62-68.	1.8	36
59	Natural vegetation of geological and historical periods in Loess Plateau. Science Bulletin, 2003, 48, 411-416.	1.7	35
60	A preliminary study of chronology for a newly-discovered ancient city and five archaeological sites in Lop Nor, China. Science Bulletin, 2010, 55, 63-71.	1.7	35
61	Palaeovegetation and palaeoclimate in low-latitude southern China during the Last Glacial Maximum. Quaternary International, 2012, 248, 79-85.	1.5	35
62	Assessing the Importance of Climate Variables for the Spatial Distribution of Modern Pollen Data in China. Quaternary Research, 2015, 83, 287-297.	1.7	35
63	Discovery of C4 species at high altitude in Qinghai-Tibetan Plateau. Science Bulletin, 2004, 49, 1392-1396.	1.7	33
64	A potential of pollen-based climate reconstruction using a modern pollen–climate dataset from arid northern and western China. Review of Palaeobotany and Palynology, 2010, 160, 111-125.	1.5	33
65	Orbital forcing of terrestrial mollusks and climatic changes from the Loess Plateau of China during the past 350 ka. Journal of Geophysical Research, 2001, 106, 20045-20054.	3.3	32
66	A new pollen record of the last 2.8 Ma from the Co Ngoin, central Tibetan Plateau. Science in China Series D: Earth Sciences, 2001, 44, 292-300.	0.9	32
67	Phytoliths reveal the earliest fine reedy textile in China at the Tianluoshan site. Scientific Reports, 2016, 6, 18664.	3.3	32
68	The spatial pattern of farming and factors influencing it during the Peiligang culture period in the middle Yellow River valley, China. Science Bulletin, 2017, 62, 1565-1568.	9.0	32
69	Tibetan Plateau Precipitation Modulated by the Periodically Coupled Westerlies and Asian Monsoon. Geophysical Research Letters, 2021, 48, e2020GL091543.	4.0	32
70	Palaeoenvironment and agriculture of ancient Loulan and Milan on the Silk Road. Holocene, 2013, 23, 208-217.	1.7	29
71	Surface soil phytoliths as vegetation and altitude indicators: a study from the southern Himalaya. Scientific Reports, 2015, 5, 15523.	3.3	28
72	Multiple indicators of rice remains and the process of rice domestication: A case study in the lower Yangtze River region, China. PLoS ONE, 2018, 13, e0208104.	2.5	28

HOUYUAN LU

#	Article	IF	CITATIONS
73	Assessing the occurrence and status of wheat in late Neolithic central China: the importance of direct AMS radiocarbon dates from Xiazhai. Vegetation History and Archaeobotany, 2020, 29, 61-73.	2.1	28
74	Rice domestication and climatic change: phytolith evidence from East China. Boreas, 2002, 31, 378-385.	2.4	27
75	Role of dynamic environmental change in sustaining the protracted process of rice domestication in the lower Yangtze River. Quaternary Science Reviews, 2020, 242, 106456.	3.0	27
76	Seasonal drought events in tropical East Asia over the last 60,000 y. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30988-30992.	7.1	27
77	The two-step monsoon changes of the last deglaciation recorded in tropical Maar Lake Huguangyan, southern China. Science Bulletin, 2000, 45, 1529-1532.	1.7	26
78	Phytolith analysis for differentiating between broomcorn millet (Panicum miliaceum) and its weed/feral type (Panicum ruderale). Scientific Reports, 2018, 8, 13022.	3.3	26
79	Spatial and temporal pattern of rice domestication during the early Holocene in the lower Yangtze region, China. Holocene, 2021, 31, 1366-1375.	1.7	26
80	Analysis of carbon isotope in phytoliths from C3 and C4 plants and modern soils. Science Bulletin, 2000, 45, 1804-1808.	1.7	24
81	Phytoliths in Inflorescence Bracts: Preliminary Results of an Investigation on Common Panicoideae Plants in China. Frontiers in Plant Science, 2019, 10, 1736.	3.6	24
82	Effect of burning C3 and C4 plants on the magnetic susceptibility signal in soils. Geophysical Research Letters, 2000, 27, 2013-2016.	4.0	23
83	Component and simulation of the 4,000-year-old noodles excavated from the archaeological site of Lajia in Qinghai, China. Science Bulletin, 2014, 59, 5136-5152.	1.7	22
84	Pollen record of the centennial climate changes during 9–7 cal ka BP in the Changjiang (Yangtze) River Delta plain, China. Quaternary Research, 2017, 87, 275-287.	1.7	22
85	Radiocarbon dating of prehistoric phytoliths: a preliminary study of archaeological sites in China. Scientific Reports, 2016, 6, 26769.	3.3	21
86	The development of Yangshao agriculture and its interaction with social dynamics in the middle Yellow River region, China. Holocene, 2019, 29, 173-180.	1.7	21
87	Phytoliths in selected broad-leaved trees in China. Scientific Reports, 2020, 10, 15577.	3.3	21
88	Magnetic susceptibility properties of polluted soils. Science Bulletin, 2000, 45, 1723-1726.	1.7	20
89	East Asian summer monsoon precipitation variations in China over the last 9500 years: A comparison of pollen-based reconstructions and model simulations. Holocene, 2016, 26, 592-602.	1.7	20
90	Cultivation strategies at the ancient Luanzagangzi settlement on the easternmost Eurasian steppe during the late Bronze Age. Vegetation History and Archaeobotany, 2017, 26, 505-512.	2.1	19

#	Article	IF	CITATIONS
91	Grey characteristics of microbanding of stalagmite in Shihua Cave, Beijing and its climatic signification(I). Science in China Series D: Earth Sciences, 1998, 41, 151-157.	0.9	18
92	Multi-proxy evidence of environmental change related to collapse of the Liangzhu Culture in the Yangtze Delta, China. Science China Earth Sciences, 2021, 64, 890-905.	5.2	18
93	A 2.8 Ma record of environmental evolution and tectonic events inferred from the Cuoe core in the middle of Tibetan Plateau. Science in China Series D: Earth Sciences, 2004, 47, 1025-1034.	0.9	17
94	Multi-centennial climate cycles and their impact on the Tubo Dynasty in the southern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 578, 110584.	2.3	16
95	Anthropogenic modification of soil communities in northern China for at least two millennia: Evidence from a quantitative mollusk approach. Quaternary Science Reviews, 2020, 248, 106579.	3.0	15
96	Crossing of the Hu line by Neolithic population in response to seesaw precipitation changes in China. Science Bulletin, 2022, 67, 844-852.	9.0	15
97	Some fundamental misconceptions about paleotempestology. Quaternary Research, 2009, 71, 253-254.	1.7	14
98	Influence of monsoonal water-energy dynamics on terrestrial mollusk species-diversity gradients in northern China. Science of the Total Environment, 2019, 676, 206-214.	8.0	14
99	Asynchronous 500-year summer monsoon rainfall cycles between Northeast and Central China during the Holocene. Global and Planetary Change, 2020, 195, 103324.	3.5	14
100	Process of rice domestication in relation to Holocene environmental changes in the Ningshao Plain, lower Yangtze. Geomorphology, 2021, 381, 107650.	2.6	14
101	Fifty years of Quaternary palynology in the Tibetan Plateau. Science China Earth Sciences, 2021, 64, 1825-1843.	5.2	14
102	The Emergence of Rice and Millet Farming in the Zang-Yi Corridor of Southwest China Dates Back to 5000ÂYears Ago. Frontiers in Earth Science, 2022, 10, .	1.8	14
103	Macro-Process of Past Plant Subsistence from the Upper Paleolithic to Middle Neolithic in China: A Quantitative Analysis of Multi-Archaeobotanical Data. PLoS ONE, 2016, 11, e0148136.	2.5	13
104	Hydrological change and human activity during Yuan–Ming Dynasties in the Loulan area, northwestern China. Holocene, 2018, 28, 1266-1275.	1.7	13
105	Bulliform Phytolith Size of Rice and Its Correlation With Hydrothermal Environment: A Preliminary Morphological Study on Species in Southern China. Frontiers in Plant Science, 2019, 10, 1037.	3.6	13
106	Seasonal diatom variability of Yunlong Lake, southwest China – a case study based on sediment trap records. Diatom Research, 2018, 33, 381-396.	1.2	12
107	Advance of research on modern soil phytolith. Science China Earth Sciences, 2018, 61, 1169-1182.	5.2	12
108	Phytolith assemblage analysis for the identification of rice paddy. Scientific Reports, 2018, 8, 10932.	3.3	12

#	Article	IF	CITATIONS
109	Phytolith Radiocarbon Dating: A Review of Previous Studies in China and the Current State of the Debate. Frontiers in Plant Science, 2019, 10, 1302.	3.6	12
110	Phytolith reconstruction of early to mid-Holocene vegetation and climatic changes in the Lower Yangtze Valley. Catena, 2021, 207, 105586.	5.0	12
111	Palynological and satellite-based MODIS observations of modern vegetational gradients in China. Quaternary International, 2010, 218, 190-201.	1.5	11
112	Dynamic Interaction Between Deforestation and Rice Cultivation During the Holocene in the Lower Yangtze River, China. Frontiers in Earth Science, 2022, 10, .	1.8	11
113	Plant crop remains from the outer burial pit of the Han Yangling Mausoleum and their significance to Early Western Han agriculture. Science Bulletin, 2009, 54, 1738-1743.	9.0	10
114	Calciphytoliths (calcium oxalate crystals) analysis for the identification of decayed tea plants (Camellia sinensis L.). Scientific Reports, 2015, 4, 6703.	3.3	10
115	Vegetation successions in response to Holocene climate changes in the central Tibetan Plateau. Journal of Arid Environments, 2016, 125, 136-144.	2.4	10
116	Impacts of the Wetland Environment on Demographic Development During the Neolithic in the Lower Yangtze Region—Based on Peat and Archaeological Dates. Frontiers in Earth Science, 2021, 9, .	1.8	10
117	Surface sediment diatoms from the western Pacific marginal seas and their correlation to environmental variables. Chinese Journal of Oceanology and Limnology, 2009, 27, 674-682.	0.7	9
118	Food and ritual resources in hunter-gatherer societies: Canarium nuts in southern China and beyond. Antiquity, 2019, 93, 1460-1478.	1.0	7
119	Influence of different extraction methods on prehistoric phytolith radiocarbon dating. Quaternary International, 2019, 528, 4-8.	1.5	7
120	Morphological characteristics of homozygous wild rice phytoliths and their significance in the study of rice origins. Science China Earth Sciences, 2022, 65, 107-117.	5.2	7
121	Mid-Neolithic Exploitation of Mollusks in the Guanzhong Basin of Northwestern China: Preliminary Results. PLoS ONE, 2013, 8, e58999.	2.5	6
122	Do changes in water depth and water level influence the diatom diversity of Yunlong Lake, in Yunnan Province, Southwest China?. Journal of Paleolimnology, 2020, 64, 273-291.	1.6	5
123	Land-snail eggs as a proxy of abrupt climatic cooling events during the reproductive season. Science Bulletin, 2021, 66, 1274-1277.	9.0	5
124	Paleorecords reveal the increased temporal instability of species diversity under biodiversity loss. Quaternary Science Reviews, 2021, 269, 107147.	3.0	5
125	Discovery of the Earliest Rice Paddy in the Mixed Rice–Millet Farming Area of China. Land, 2022, 11, 831.	2.9	5
126	Origin area and migration route: Chloroplast DNA diversity in the arctic-alpine plant Koenigia islandica. Science China Earth Sciences, 2014, 57, 1760-1770.	5.2	4

HOUYUAN LU

#	Article	IF	CITATIONS
127	Eco-environmental changes in the Chinese Loess Plateau during low-eccentricity interglacial Marine Isotope Stage 19. Science China Earth Sciences, 2020, 63, 1408-1421.	5.2	4
128	Phytolith records of flourishing early Holocene Pooideae linked to an 8.2 ka cold event in subtropical China. Elementa, 2020, 8, .	3.2	4
129	Intensification of rice farming and its environmental consequences recorded in a Liangzhu reservoir, China. Quaternary International, 2022, 619, 39-45.	1.5	4
130	Phytoliths in spikelets of selected Oryzoideae species: new findings from in situ observation. Archaeological and Anthropological Sciences, 2022, 14, 1.	1.8	4
131	Glacial-interglacial evolution of seasonal cooling events documented by land-snail eggs from Chinese loess. Quaternary Science Reviews, 2022, 284, 107506.	3.0	4
132	Cascading response of flora and terrestrial mollusks to last deglacial warming. Global Ecology and Conservation, 2020, 24, e01360.	2.1	3
133	Neolithic Rice Cultivation and Consequent Landscape Changes at the Baodun Site, Southwestern China. Frontiers in Earth Science, 2021, 9, .	1.8	3
134	New evidence supports the continuous development of rice cultivation and early formation of mixed farming in the Middle Han River Valley, China. Holocene, 2022, 32, 924-934.	1.7	3
135	The effect of C3 and C4 plants for the magnetic susceptibility signal in soils. Science in China Series D: Earth Sciences, 2001, 44, 318-325.	0.9	2
136	Rapid Northwestward Extension of the East Asian Summer Monsoon Since the Last Deglaciation: Evidence From the Mollusk Record. Frontiers in Earth Science, 2021, 9, .	1.8	2
137	500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record. , 2016, , .		1