
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3453200/publications.pdf Version: 2024-02-01

YONCH SONG

#	Article	IF	CITATIONS
1	Effect of Spatial Average on the Spatiotemporal Pattern Formation of Reaction-Diffusion Systems. Journal of Dynamics and Differential Equations, 2022, 34, 2123-2156.	1.9	13
2	Spatiotemporal dynamics of a diffusive consumerâ€resource model with explicit spatial memory. Studies in Applied Mathematics, 2022, 148, 373-395.	2.4	31
3	Stability and spatiotemporal dynamics of a diffusive predator–prey system with generalist predator and nonlocal intraspecific competition. Mathematics and Computers in Simulation, 2022, 194, 159-168.	4.4	2
4	Spatially nonhomogeneous periodic patterns in a delayed predator–prey model with predator-taxis diffusion. Applied Mathematics Letters, 2022, 131, 108062.	2.7	7
5	Dynamics and pattern formation in a reaction-diffusion-advection mussel–algae model. Zeitschrift Fur Angewandte Mathematik Und Physik, 2022, 73, 1.	1.4	3
6	Normal forms of double Hopf bifurcation for a reaction-diffusion system with delay and nonlocal spatial average and applications. Computers and Mathematics With Applications, 2022, 119, 174-192.	2.7	2
7	Stability and Double-Hopf Bifurcations of a Gause–Kolmogorov-Type Predator–Prey System with Indirect Prey-Taxis. Journal of Dynamics and Differential Equations, 2021, 33, 1917-1957.	1.9	26
8	Memory-based movement with spatiotemporal distributed delays in diffusion and reaction. Applied Mathematics and Computation, 2021, 404, 126254.	2.2	11
9	The spatially inhomogeneous Hopf bifurcation induced by memory delay in a memory-based diffusion system. Journal of Differential Equations, 2021, 300, 597-624.	2.2	56
10	Stability and Turing Patterns in a Predator–Prey Model with Hunting Cooperation and Allee Effect in Prey Population. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050137.	1.7	23
11	Spatiotemporal dynamics of a diffusive predator-prey model with nonlocal effect and delay. Communications in Nonlinear Science and Numerical Simulation, 2020, 89, 105310.	3.3	22
12	Spatio-temporal dynamics of a reaction–diffusion equation with the nonlocal spatial average and delay. Applied Mathematics Letters, 2020, 107, 106388.	2.7	8
13	Stability and cross-diffusion-driven instability in a diffusive predator–prey system with hunting cooperation functional response. Nonlinear Analysis: Real World Applications, 2020, 54, 103106.	1.7	31
14	Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect. Journal of Differential Equations, 2019, 267, 6316-6351.	2.2	77
15	Stability and spatiotemporal dynamics in a diffusive predator–prey model with nonlocal prey competition. Nonlinear Analysis: Real World Applications, 2019, 48, 12-39.	1.7	41
16	TURING-HOPF BIFURCATION IN THE REACTION-DIFFUSION SYSTEM WITH DELAY AND APPLICATION TO A DIFFUSIVE PREDATOR-PREY MODEL. Journal of Applied Analysis and Computation, 2019, 9, 1132-1164.	0.5	14
17	Bistability and delay-induced stability switches in a cancer network with the regulation of microRNA. Communications in Nonlinear Science and Numerical Simulation, 2018, 54, 302-319.	3.3	10
18	Pattern dynamics in a Gierer–Meinhardt model with a saturating term. Applied Mathematical Modelling, 2017, 46, 476-491.	4.2	31

#	Article	IF	CITATIONS
19	Stability, Steadyâ€State Bifurcations, and Turing Patterns in a Predator–Prey Model with Herd Behavior and Preyâ€ŧaxis. Studies in Applied Mathematics, 2017, 139, 371-404.	2.4	90
20	Dynamics of a ratioâ€dependent stageâ€structured predatorâ€prey model with delay. Mathematical Methods in the Applied Sciences, 2017, 40, 6451-6467.	2.3	17
21	Hopf bifurcation in a reaction–diffusion equation with distributed delay and Dirichlet boundary condition. Journal of Differential Equations, 2017, 263, 6537-6575.	2.2	33
22	Spatiotemporal Dynamics of the Diffusive Mussel-Algae Model Near Turing-Hopf Bifurcation. SIAM Journal on Applied Dynamical Systems, 2017, 16, 2030-2062.	1.6	91
23	Spatial resonance and Turing–Hopf bifurcations in the Gierer–Meinhardt model. Nonlinear Analysis: Real World Applications, 2016, 31, 356-387.	1.7	35
24	Normal Form of Saddle-Node-Hopf Bifurcation in Retarded Functional Differential Equations and Applications. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650040.	1.7	4
25	Hopf bifurcation and chaos in a delayed Nicholson's blowflies equation with nonlinear density-dependent mortality rate. Nonlinear Dynamics, 2016, 84, 1021-1032.	5.2	6
26	Hopf Bifurcation and Delay-Induced Turing Instability in a Diffusive <i>lac</i> Operon Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650167.	1.7	11
27	Delay-Induced Triple-Zero Bifurcation in a Delayed Leslie-Type Predator–Prey Model with Additive Allee Effect. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650117.	1.7	10
28	Turing–Hopf bifurcation analysis of a predator–prey model with herd behavior and cross-diffusion. Nonlinear Dynamics, 2016, 86, 73-89.	5.2	70
29	Turing–Hopf bifurcation in the reaction–diffusion equations and its applications. Communications in Nonlinear Science and Numerical Simulation, 2016, 33, 229-258.	3.3	95
30	Stability and Bifurcation Analysis of Differential Equations and Its Applications. Abstract and Applied Analysis, 2015, 2015, 1-1.	0.7	0
31	Dynamical Aspects of Initial/Boundary Value Problems for Ordinary Differential Equations 2014. Abstract and Applied Analysis, 2015, 2015, 1-1.	0.7	0
32	Bifurcation analysis and Turing instability in a diffusive predator-prey model with herd behavior and hyperbolic mortality. Chaos, Solitons and Fractals, 2015, 81, 303-314.	5.1	53
33	Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator–prey model with herd behavior. Applied Mathematics and Computation, 2015, 254, 375-391.	2.2	69
34	Cross-diffusion induced spatiotemporal patterns in a predator–prey model with herd behavior. Nonlinear Analysis: Real World Applications, 2015, 24, 36-49.	1.7	70
35	Normal forms of non-resonance and weak resonance double Hopf bifurcation in the retarded functional differential equations and applications. Applied Mathematics and Computation, 2015, 266, 1102-1126.	2.2	9
36	Stability and bifurcation analysis of a reaction–diffusion equation with spatio-temporal delay. Journal of Mathematical Analysis and Applications, 2015, 430, 243-261.	1.0	21

#	Article	IF	CITATIONS
37	Delay-Induced Double Hopf Bifurcations in a System of Two Delay-Coupled van der Pol–Duffing Oscillators. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550058.	1.7	16
38	Bifurcation Analysis of a Diffusive Activator–Inhibitor Model in Vascular Mesenchymal Cells. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1530026.	1.7	4
39	Bifurcation analysis of a diffusive predator–prey system with a herd behavior and quadratic mortality. Mathematical Methods in the Applied Sciences, 2015, 38, 2994-3006.	2.3	24
40	Stability and bifurcation analysis of a reaction–diffusion equation with distributed delay. Nonlinear Dynamics, 2015, 79, 437-454.	5.2	21
41	Persistence, Stability and Hopf Bifurcation in a Diffusive Ratio-Dependent Predator–Prey Model with Delay. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1450093.	1.7	34
42	Bifurcation Analysis and Spatiotemporal Patterns of Nonlinear Oscillations in a Ring Lattice of Identical Neurons with Delayed Coupling. Abstract and Applied Analysis, 2014, 2014, 1-18.	0.7	1
43	Spatiotemporal dynamics in a diffusive ratio-dependent predator–prey model near a Hopf–Turing bifurcation point. Computers and Mathematics With Applications, 2014, 67, 1978-1997.	2.7	64
44	Bifurcation analysis of a diffusive ratio-dependent predator–prey model. Nonlinear Dynamics, 2014, 78, 49-70.	5.2	50
45	Delay-induced Bogdanov–Takens bifurcation in a Leslie–Gower predator–prey model with nonmonotonic functional response. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 2454-2465.	3.3	27
46	Stability and Hopf bifurcation in a model of gene expression with distributed time delays. Applied Mathematics and Computation, 2014, 243, 398-412.	2.2	24
47	Stability and Hopf bifurcation in an unidirectional ring of n neurons with distributed delays. Neurocomputing, 2013, 121, 442-452.	5.9	26
48	Stability and Hopf bifurcation in an inverted pendulum with delayed feedback control. Nonlinear Dynamics, 2013, 73, 737-749.	5.2	8
49	Bogdanov–Takens bifurcation in an oscillator with negative damping and delayed position feedback. Applied Mathematical Modelling, 2013, 37, 8091-8105.	4.2	20
50	Stability and Bifurcation Analysis of a Delayed Leslie-Gower Predator-Prey System with Nonmonotonic Functional Response. Abstract and Applied Analysis, 2013, 2013, 1-19.	0.7	9
51	Inphase and Antiphase Synchronization in a Delay-Coupled System With Applications to a Delay-Coupled FitzHugh–Nagumo System. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23, 1659-1670.	11.3	36
52	STEADY-STATE, HOPF AND STEADY-STATE-HOPF BIFURCATIONS IN DELAY DIFFERENTIAL EQUATIONS WITH APPLICATIONS TO A DAMPED HARMONIC OSCILLATOR WITH DELAY FEEDBACK. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250286.	1.7	12
53	Stability and Hopf bifurcation in a three-neuron unidirectional ring with distributed delays. Nonlinear Dynamics, 2012, 69, 357-370.	5.2	10
54	Spatio-temporal patterns of Hopf bifurcating periodic oscillations in a pair of identical tri-neuron network loops. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 943-952.	3.3	8

#	Article	IF	CITATIONS
55	The stability and Hopf bifurcation analysis of a gene expression model. Journal of Mathematical Analysis and Applications, 2012, 395, 103-113.	1.0	29
56	Bifurcation, amplitude death and oscillation patterns in a system of three coupled van der Pol oscillators with diffusively delayed velocity coupling. Chaos, 2011, 21, 023111.	2.5	28
57	Delay induced oscillations in a turbidostat with feedback control. Journal of Mathematical Chemistry, 2011, 49, 1646-1666.	1.5	10
58	Hopf bifurcation and spatio-temporal patterns inÂdelay-coupled van der Pol oscillators. Nonlinear Dynamics, 2011, 63, 223-237.	5.2	20
59	Oscillations in a plasmid turbidostat model with delayed feedback control. Discrete and Continuous Dynamical Systems - Series B, 2011, 15, 893-914.	0.9	4
60	Stability switches, oscillatory multistability, and spatio-temporal patterns of nonlinear oscillations in recurrently delay coupled neural networks. Biological Cybernetics, 2009, 101, 147-167.	1.3	25
61	Stability Switches, Hopf Bifurcations, andÂSpatio-temporal Patterns inÂaÂDelayed Neural Model withÂBidirectional Coupling. Journal of Nonlinear Science, 2009, 19, 597-632.	2.1	21
62	Stability switches and Hopf bifurcations in a pair of identical tri-neuron network loops. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1744-1749.	2.1	14
63	Stabilization and algorithm of integrator plus dead-time process using PID controller. Journal of Process Control, 2009, 19, 1529-1537.	3.3	18
64	Bifurcation analysis and spatio-temporal patterns of nonlinear oscillations in a delayed neural network with unidirectional coupling. Nonlinearity, 2009, 22, 975-1001.	1.4	39
65	Bifurcations for a predator–prey system with two delays. Journal of Mathematical Analysis and Applications, 2008, 337, 466-479.	1.0	67
66	Elements for a general memory structure: properties of recurrent neural networks used to form situation models. Biological Cybernetics, 2008, 98, 371-395.	1.3	27
67	Stability and multiple bifurcations of a damped harmonic oscillator with delayed feedback near zero eigenvalue singularity. Chaos, 2008, 18, 043113.	2.5	8
68	Bifurcation analysis for a regulated logistic growth model. Applied Mathematical Modelling, 2007, 31, 1729-1738.	4.2	20
69	Existence of traveling wave solutions for a reaction–diffusion equation with distributed delays. Nonlinear Analysis: Theory, Methods & Applications, 2007, 67, 2415-2423.	1.1	6
70	Stability Switches and Hopf Bifurcations in a Pair of Delay-Coupled Oscillators. Journal of Nonlinear Science, 2007, 17, 145-166.	2.1	36
71	Periodic solutions of a nonautonomous periodic model of population with continuous and discrete time. Journal of Computational and Applied Mathematics, 2006, 188, 256-264.	2.0	5
72	Stability and bifurcation analysis on a Logistic model with discrete and distributed delays. Applied Mathematics and Computation, 2006, 181, 1745-1757.	2.2	28

#	Article	IF	CITATIONS
73	Bifurcation analysis on a survival red blood cells model. Journal of Mathematical Analysis and Applications, 2006, 316, 459-471.	1.0	18
74	Bifurcation analysis in a predator–prey system with time delay. Nonlinear Analysis: Real World Applications, 2006, 7, 265-284.	1.7	89
75	Existence of Travelling Wave Fronts for a Diffusive Vector Disease Model with Delay. Journal of Dynamical and Control Systems, 2006, 12, 97-107.	0.8	3
76	Periodic Solutions of a Discrete Time Predator-Prey System. Acta Mathematicae Applicatae Sinica, 2006, 22, 397-404.	0.7	0
77	Stability and bifurcation in a non-kolmogorov type prey-predator system with time delay. Mathematical and Computer Modelling, 2005, 41, 1445-1455.	2.0	5
78	Local Hopf bifurcation and global periodic solutions in a delayed predator–prey system. Journal of Mathematical Analysis and Applications, 2005, 301, 1-21.	1.0	170
79	Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays. Physica D: Nonlinear Phenomena, 2005, 200, 185-204.	2.8	217
80	Positive periodic solutions of a periodic survival red blood cell model. Applicable Analysis, 2005, 84, 1095-1101.	1.3	4
81	LOCAL AND GLOBAL HOPF BIFURCATION IN A DELAYED HEMATOPOIESIS MODEL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2004, 14, 3909-3919.	1.7	42
82	Stability and Hopf bifurcations in a competitive Lotka–Volterra system with two delays. Chaos, Solitons and Fractals, 2004, 22, 1139-1148.	5.1	98
83	Travelling wavefronts in the diffusive single species model with Allee effect and distributed delay. Applied Mathematics and Computation, 2004, 152, 483-497.	2.2	21
84	Existence of entire large positive solutions of a semilinear elliptic system. Applied Mathematics and Computation, 2004, 155, 687-698.	2.2	17
85	Bifurcation analysis for Chen's system with delayed feedback and its application to control of chaosâ~†. Chaos, Solitons and Fractals, 2004, 22, 75-91.	5.1	174
86	Direction and stability of bifurcating periodic solutions of a chemostat model with two distributed delays. Chaos, Solitons and Fractals, 2004, 21, 1109-1123.	5.1	12
87	Double Hopf Bifurcation Analysis in the Memory-based Diffusion System. Journal of Dynamics and Differential Equations, 0, , .	1.9	10