Thomas M Gradziel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3451813/publications.pdf

Version: 2024-02-01

105 papers

3,618 citations

32 h-index 56 g-index

110 all docs

110 docs citations

110 times ranked

1998 citing authors

#	Article	IF	CITATIONS
1	Resistance to <i>Aspergillus flavus</i> and <i>Aspergillus parasiticus</i> in Almond Advanced Selections and Cultivars and Its Interaction with the Aflatoxin Biocontrol Strategy. Plant Disease, 2022, 106, 504-509.	1.4	2
2	Exotic genes for solving emerging peach production challenges. Scientia Horticulturae, 2022, 295, 110801.	3.6	11
3	Identification of Putative Markers of Non-infectious Bud Failure in Almond [Prunus dulcis (Mill.) D.A. Webb] Through Genome Wide DNA Methylation Profiling and Gene Expression Analysis in an Almond × Peach Hybrid Population. Frontiers in Plant Science, 2022, 13, 804145.	3.6	5
4	Whole-genome sequence and methylome profiling of the almond [⟨i⟩Prunus dulcis⟨ i⟩ (Mill.) D.A. Webb] cultivar â€~Nonpareil'. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	14
5	Propagation of an Epigenetic Age-Related Disorder in Almond Is Governed by Vegetative Bud Ontogeny Rather Than Chimera-Type Cell Lineage. Horticulturae, 2021, 7, 190.	2.8	3
6	An roGFP2-Based Bacterial Bioreporter for Redox Sensing of Plant Surfaces. Phytopathology, 2020, 110, 297-308.	2.2	4
7	Rooting response of Prunus wild relative semi-hardwood cuttings to indole-3-butyric acid potassium salt (KIBA). Scientia Horticulturae, 2020, 263, 109144.	3.6	7
8	Redomesticating Almond to Meet Emerging Food Safety Needs. Frontiers in Plant Science, 2020, 11, 778.	3.6	7
9	Genomic Designing for New Climate-Resilient Almond Varieties. , 2020, , 1-21.		3
10	Propagation from Basal Epicormic Meristems Remediates an Aging-Related Disorder in Almond Clones. Horticulturae, 2019, 5, 28.	2.8	6
11	â€~Kader' Peach: A Processing Clingstone Peach with Improved Harvest Quality and Disease Resistance, Ripening in the â€~Dixon' Maturity Season. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 754-757.	1.0	0
12	â€~Vilmos' Peach: A New and Improved "Stay-ripe―Processing Clingstone Peach Ripening in the â€~Andro Maturity Season. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 2078-2080.	ross' 1.0	2
13	â€~Kester' Almond: A Pollenizer for the Late â€~Nonpareil' Bloom with High Yield and Kernel Quality. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 2260-2261.	1.0	1
14	Genome-wide DNA-(de)methylation is associated with Noninfectious Bud-failure exhibition in Almond (Prunus dulcis [Mill.] D.A.Webb). Scientific Reports, 2017, 7, 42686.	3.3	23
15	Comparison of Laboratoryâ€Developed and Commercial Monoclonal Antibodyâ€Based Sandwich Enzymeâ€Linked Immunosorbent Assays for Almond (<i>Prunus dulcis</i>) Detection and Quantification. Journal of Food Science, 2017, 82, 2504-2515.	3.1	8
16	The delay of flowering time in almond: a review of the combined effect of adaptation, mutation and breeding. Euphytica, 2017, 213, 1.	1,2	34
17	Effects of processing and storage on almond (Prunus dulcis L.) amandin immunoreactivity. Food Research International, 2017, 100, 87-95.	6.2	17
18	Application of a Bayesian ordinal animal model for the estimation of breeding values for the resistance to <i>Monilinia fruticola</i> (G.Winter) Honey in progenies of peach [<i>Prunus persica</i> (L.) Batsch]. Breeding Science, 2017, 67, 110-122.	1.9	8

#	Article	IF	Citations
19	Interspecific Periclinal Chimeras as a Strategy for Cultivar Development. , 2016, , 235-269.		1
20	The Impact of Maturity Stage on Cell Membrane Integrity and Enzymatic Browning Reactions in High Pressure Processed Peaches (<i>Prunus persica</i>). Journal of Agricultural and Food Chemistry, 2016, 64, 7216-7224.	5.2	4
21	Effects of Peach Cultivar on Enzymatic Browning Following Cell Damage from High-Pressure Processing. Journal of Agricultural and Food Chemistry, 2016, 64, 7606-7614.	5.2	11
22	Genome-wide view of genetic diversity reveals paths of selection and cultivar differentiation in peach domestication. DNA Research, 2016, 23, 271-282.	3.4	64
23	QTL mapping and breeding value estimation through pedigree-based analysis of fruit size and weight in four diverse peach breeding programs. Tree Genetics and Genomes, 2016, 12, 1.	1.6	46
24	Discovery of non-climacteric and suppressed climacteric bud sport mutations originating from a climacteric Japanese plum cultivar (Prunus salicina Lindl.). Frontiers in Plant Science, 2015, 6, 316.	3.6	72
25	QTL mapping of pomological traits in peach and related species breeding germplasm. Molecular Breeding, 2015, 35, 1.	2.1	64
26	Phylogenetic relationships among the first and second introns of selected Prunus S-RNase genes. Canadian Journal of Plant Science, 2015, 95, 1145-1154.	0.9	3
27	Application of mouse monoclonal antibody (mAb) 4C10-based enzyme-linked immunosorbent assay (ELISA) for amandin detection in almond (Prunus dulcis L.) genotypes and hybrids. LWT - Food Science and Technology, 2015, 60, 535-543.	5.2	8
28	Two Novel Self-compatible S Haplotypes in Peach (Prunus persica). Japanese Society for Horticultural Science, 2014, 83, 203-213.	0.8	30
29	Methylation of the S f locus in almond is associated with S-RNase loss of function. Plant Molecular Biology, 2014, 86, 681-689.	3.9	37
30	Phenotypic diversity among local Spanish and foreign peach and nectarine [Prunus persica (L.) Batsch] accessions. Euphytica, 2014, 197, 261-277.	1.2	48
31	Heterogeneity in the entire genome for three genotypes of peach [Prunus persica (L.) Batsch] as distinguished from sequence analysis of genomic variants. BMC Genomics, 2013, 14, 750.	2.8	19
32	Effect prediction of identified SNPs linked to fruit quality and chilling injury in peach [Prunus persica (L.) Batsch]. Plant Molecular Biology, 2013, 81, 161-174.	3.9	23
33	High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica) Tj ETQq1	l 0.784314 1.6	4 rgBT /Over
34	Application of Genomic and Quantitative Genetic Tools to Identify Candidate Resistance Genes for Brown Rot Resistance in Peach. PLoS ONE, 2013, 8, e78634.	2.5	55
35	â€~Sweetheart' Almond: A Fully Cross-compatible Pollenizer for the Early â€~Nonpareil' Bloom that Exhibits Very High â€~Marcona'-type Kernel Quality. Hortscience: A Publication of the American Society for Hortcultural Science, 2013, 48, 1320-1322.	1.0	6
36	Almond., 2012,, 697-728.		10

#	Article	IF	CITATIONS
37	Influence of year and genetic factors on chilling injury susceptibility in peach (Prunus persica (L.)) Tj ETQq1 1 0.78	4314 rgBT 1.2	lQverlock
38	Genetic diversity of some wild almonds and related Prunus species revealed by SSR and EST-SSR molecular markers. Plant Systematics and Evolution, 2012, 298, 173-192.	0.9	41
39	Traditional Genetics and Breeding. , 2012, , 22-54.		5
40	First genetic linkage map of chilling injury susceptibility in peach (Prunus persica (L.) Batsch) fruit with SSR and SNP markers. Journal of Plant Science and Molecular Breeding, 2012, 1, 3.	1.2	10
41	Seed germination and seedling establishment of some wild almond species. African Journal of Biotechnology, 2011, 10, 7780-7786.	0.6	8
42	Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection. BMC Genomics, 2011, 12, 569.	2.8	65
43	Hull Split Date and Shell Seal in Relation to Navel Orangeworm (Lepidoptera: Pyralidae) Infestation of Almonds. Journal of Economic Entomology, 2011, 104, 965-969.	1.8	13
44	Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch] progeny. Postharvest Biology and Technology, 2010, 58, 79-87.	6.0	86
45	Correlations between quantitative tree and fruit almond traits and their implications for breeding. Scientia Horticulturae, 2010, 125, 323-331.	3.6	30
46	The origin and dissemination of the cultivated almond as determined by nuclear and chloroplast SSR marker analysis. Scientia Horticulturae, 2010, 125, 593-601.	3.6	49
47	Goodwin' Peach: a Processing Clingstone Peach Ripening in the  Dixon'â€″ Andross' Maturity Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 1901-1903.	Season.	O
48	A fruit quality gene map of Prunus. BMC Genomics, 2009, 10, 587.	2.8	102
49	A practical method for almond cultivar identification and parental analysis using simple sequence repeat markers. Euphytica, 2009, 168, 41-48.	1.2	40
50	Phenotypic diversity within native Iranian almond (Prunus spp.) species and their breeding potential. Genetic Resources and Crop Evolution, 2009, 56, 947-961.	1.6	86
51	Discriminating ability of molecular markers and morphological characterization in the establishment of genetic relationships in cultivated genotypes of almond and related wild species. Journal of Forestry Research, 2009, 20, 183-194.	3.6	9
52	Almond (Prunus dulcis) Breeding. , 2009, , 1-31.		20
53	Breeding Plantation Tree Crops: Temperate Species. , 2009, , .		20
54	Genomics of Almond., 2009,, 187-219.		12

#	Article	IF	CITATIONS
55	Cloning and Characterization of a Self-compatible Sf Haplotype in Almond [Prunus dulcis (Mill.) D.A. Webb. syn. P. amygdalus Batsch] to Resolve Previous Confusion in Its Sf-RNase Sequence. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 609-613.	1.0	22
56	Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Molecular Biology, 2008, 68, 379-397.	3.9	80
57	Leucoanthocyanidin dioxygenase gene (PpLDOX): a potential functional marker for cold storage browning in peach. Tree Genetics and Genomes, 2008, 4, 543-554.	1.6	37
58	â€~Lilleland' Peach: A High Case-yield Processing Clingstone Peach for the â€~Halford' Maturity Period. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 542-543.	1.0	1
59	Almond., 2007,, 229-242.		27
60	â€Winters' Almond: An Early-blooming, Productive, and High-quality Pollenizer for â€Nonpareil'. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 1725-1727.	1.0	16
61	Multidimensional Analysis of S-alleles from Cross-incompatible Groups of California Almond Cultivars. Journal of the American Society for Horticultural Science, 2006, 131, 632-636.	1.0	19
62	Endopolygalacturonase: a Candidate Gene for Freestone and Melting Fleshin Peach. Molecular Breeding, 2005, 16, 21-31.	2.1	140
63	Improved technique for counting chromosomes in almond. Scientia Horticulturae, 2005, 105, 139-143.	3.6	13
64	Candidate Gene Analysis of Internal Breakdown in Peach. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1147A-1147.	1.0	0
65	Noninfectious Bud Failure in `Carmel' Almond: I. Pattern of Development in Vegetative Progeny Trees. Journal of the American Society for Horticultural Science, 2004, 129, 244-249.	1.0	17
66	Resistance to Plum Pox Virus (Dideron Isolate RB3.30) in a Group of California Almonds and Transfer of Resistance to Peach. Journal of the American Society for Horticultural Science, 2004, 129, 544-548.	1.0	21
67	Title is missing!. Euphytica, 2003, 131, 313-322.	1.2	73
68	Sexual polyembryony in almond. Sexual Plant Reproduction, 2003, 16, 135-139.	2.2	31
69	Stylar ribonucleases in almond: correlation with and prediction of incompatibility genotypes. Plant Breeding, 2003, 122, 70-76.	1.9	41
70	Structural and Transcriptional Analysis of the Self-Incompatibility Locus of Almond: Identification of a Pollen-Expressed F-Box Gene with Haplotype-Specific Polymorphism. Plant Cell, 2003, 15, 771-781.	6.6	422
71	Screening for Aspergillus flavus Resistance in Almond. Hortscience: A Publication of the American Society for Hortcultural Science, 2003, 38, 266-268.	1.0	11
72	Relationships among Peach, Almond, and Related Species as Detected by Simple Sequence Repeat Markers. Journal of the American Society for Horticultural Science, 2003, 128, 667-671.	1.0	43

#	Article	IF	CITATIONS
73	Different Genes for Different Folks in Tree Crops: What Works and What Does Not. Hortscience: A Publication of the American Society for Hortcultural Science, 2002, 37, 281-286.	1.0	8
74	'Nickels' Almond \tilde{A} — Peach Hybrid Clonal Rootstock. Hortscience: A Publication of the American Society for Hortcultural Science, 2002, 37, 415-417.	1.0	2
75	Low Temperature Storage of Almond Pollen. Hortscience: A Publication of the American Society for Hortcultural Science, 2002, 37, 691-692.	1.0	33
76	Shell Seal Breakdown in Almond is Associated with the Site of Secondary Ovule Abortion. Journal of the American Society for Horticultural Science, 2002, 127, 69-74.	1.0	26
77	Electrophoretic and Immunological Analyses of Almond (<i>Prunus dulcis</i> L.) Genotypes and Hybrids. Journal of Agricultural and Food Chemistry, 2001, 49, 2043-2052.	5.2	48
78	Establishing Breeding Programmes for New Crops: Lessons from the Eastern Black Walnut Programme. Outlook on Agriculture, 2001, 30, 195-203.	3.4	0
79	Characterization of the <i>S</i> -Locus Region of Almond (<i>Prunus dulcis</i>): Analysis of a Somaclonal Mutant and a Cosmid Contig for an <i>S</i>) Haplotype. Genetics, 2001, 158, 379-386.	2.9	77
80	In vivo Micrografts in Almond and Their Application in Breeding Programs. HortTechnology, 2001, 11, 313-315.	0.9	6
81	Identification of self-incompatibility genotypes of almond by allele-specific PCR analysis. Theoretical and Applied Genetics, 2000, 101, 344-349.	3.6	141
82	482 In Vivo Micrografts in Almond (Prunus dulcis). Hortscience: A Publication of the American Society for Hortcultural Science, 2000, 35, 477C-477.	1.0	1
83	Register of New Fruit and Nut Varieties List 40. Hortscience: A Publication of the American Society for Hortcultural Science, 2000, 35, 812-826.	1.0	9
84	Aflatoxin Production among Almond Genotypes Is Not Related to Either Kernel Oil Composition or Aspergillus flavus Growth Rate. Hortscience: A Publication of the American Society for Hortcultural Science, 2000, 35, 937-939.	1.0	17
85	Short-term Storage of Almond Pollen. Hortscience: A Publication of the American Society for Hortcultural Science, 2000, 35, 1151-1152.	1.0	9
86	High Relative Humidity Reduces Anther Dehiscence in Apricot, Peach, and Almond. Hortscience: A Publication of the American Society for Hortcultural Science, 1999, 34, 322-325.	1.0	30
87	489 Detection of Hidden Sectorial Chimeras in Almond Shoots through Distortions in Flower Symmetry. Hortscience: A Publication of the American Society for Hortcultural Science, 1999, 34, 529C-529.	1.0	0
88	Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Molecular Genetics and Genomics, 1998, 260, 261-268.	2.4	193
89	BREEDING FOR SELF-FERTILITY IN CALIFORNIA ALMOND CULTIVARS. Acta Horticulturae, 1998, , 109-117.	0.2	34
90	Genetic Characterization and Relatedness among California Almond Cultivars and Breeding Lines Detected by Randomly Amplified Polymorphic DNA (RAPD) Analysis. Journal of the American Society for Horticultural Science, 1998, 123, 381-387.	1.0	59

#	Article	IF	CITATIONS
91	Measuring Flesh Color Variability among Processing Clingstone Peach Genotypes Differing in Carotenoid Composition. Journal of the American Society for Horticultural Science, 1998, 123, 433-437.	1.0	23
92	Oil Content and Fatty Acid Composition of Almond Kernels from Different Genotypes and California Production Regions. Journal of the American Society for Horticultural Science, 1998, 123, 1029-1033.	1.0	75
93	Identification of Stylar RNases Associated with Gametophytic Self-Incompatibility in Almond (Prunus) Tj ETQq1 1	0.784314 3.1	rgBT /Overl
94	Susceptibility of California Almond Cultivars to Aflatoxigenic Aspergillus flavus. Hortscience: A Publication of the American Society for Hortcultural Science, 1994, 29, 33-35.	1.0	20
95	Changes in Susceptibility to Brown Rot with Ripening in Three Clingstone Peach Genotypes. Journal of the American Society for Horticultural Science, 1994, 119, 101-105.	1.0	21
96	Identifying Pollen Incompatibility Groups in California Almond Cultivars. Journal of the American Society for Horticultural Science, 1994, 119, 106-109.	1.0	56
97	523 PB 489 INCORPORATION OF USEFUL TRAITS FROM NATIVE ALMOND SPECIES INTO CULTIVATED ALMOND VARIETIES. II. GENE INTROGRESSION. Hortscience: A Publication of the American Society for Hortcultural Science, 1994, 29, 506d-506.	1.0	O
98	034 INCORPORATION OF USEFUL TRAITS FROM NATIVE ALMOND SPECIES INTO CULTIVATED ALMOND VARIETIES. Hortscience: A Publication of the American Society for Hortcultural Science, 1994, 29, 432e-432.	1.0	0
99	Semidwarf Growth Habit in Clingstone Peach with Desirable Tree and Fruit Qualities. Hortscience: A Publication of the American Society for Hortcultural Science, 1993, 28, 1045-1047.	1.0	15
100	THE EFFECT OF ENFORCED SELFING ON RESULTANT SEED AND SEEDLING QUALITY IN THE SELF-INCOMPATIBLE ALMOND VARIETY NONPAREIL. Hortscience: A Publication of the American Society for Hortcultural Science, 1992, 27, 658b-658.	1.0	0
101	Overcoming unilateral breeding barriers between Lycopersicon peruvianum and cultivated tomato, Lycopersicon esculentum. Euphytica, 1991, 54, 1-9.	1.2	16
102	Transient Gene Expression in Maize, Rice, and Wheat Cells Using an Airgun Apparatus. Plant Physiology, 1990, 92, 334-339.	4.8	105
103	Breakdown of self-incompatibility during pistil development in Lycopersicon peruvianum by modified bud pollination. Sexual Plant Reproduction, 1989, 2, 38.	2.2	10
104	Solanum lycopersicoides gene introgression to tomato, Lycopersicon esculentum, through the systematic avoidance and suppression of breeding barriers. Sexual Plant Reproduction, 1989, 2, 43.	2.2	15
105	Teaching Principles of Linkage and Gene Mapping with the Tomato. American Biology Teacher, 1980, 42, 16-22.	0.2	1