
Thomas M Gradziel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3451813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural and Transcriptional Analysis of the Self-Incompatibility Locus of Almond: Identification of a Pollen-Expressed F-Box Gene with Haplotype-Specific Polymorphism. Plant Cell, 2003, 15, 771-781.	6.6	422
2	Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Molecular Genetics and Genomics, 1998, 260, 261-268.	2.4	193
3	Identification of Stylar RNases Associated with Gametophytic Self-Incompatibility in Almond (Prunus) Tj ETQq1 1	0.784314 3.1	rgBT /Overla
4	Identification of self-incompatibility genotypes of almond by allele-specific PCR analysis. Theoretical and Applied Genetics, 2000, 101, 344-349.	3.6	141
5	Endopolygalacturonase: a Candidate Gene for Freestone and Melting Fleshin Peach. Molecular Breeding, 2005, 16, 21-31.	2.1	140
6	Transient Gene Expression in Maize, Rice, and Wheat Cells Using an Airgun Apparatus. Plant Physiology, 1990, 92, 334-339.	4.8	105
7	A fruit quality gene map of Prunus. BMC Genomics, 2009, 10, 587.	2.8	102
8	High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica) Tj ETQq0 0 (Ο rgβT /Ον	erlock 10 Tf 92
9	Phenotypic diversity within native Iranian almond (Prunus spp.) species and their breeding potential. Genetic Resources and Crop Evolution, 2009, 56, 947-961.	1.6	86
10	Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch] progeny. Postharvest Biology and Technology, 2010, 58, 79-87.	6.0	86
11	Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Molecular Biology, 2008, 68, 379-397.	3.9	80
12	Characterization of the <i>S</i> -Locus Region of Almond (<i>Prunus dulcis</i>): Analysis of a Somaclonal Mutant and a Cosmid Contig for an <i>S</i> Haplotype. Genetics, 2001, 158, 379-386.	2.9	77

12	Characterization of the <i>S</i> -Locus Region of Almond (<i>Prunus dulcis</i>): Analysis of a Somaclonal Mutant and a Cosmid Contig for an <i>S</i> Haplotype. Genetics, 2001, 158, 379-386.	2.9	77
13	Oil Content and Fatty Acid Composition of Almond Kernels from Different Genotypes and California Production Regions. Journal of the American Society for Horticultural Science, 1998, 123, 1029-1033.	1.0	75
14	Title is missing!. Euphytica, 2003, 131, 313-322.	1.2	73
15	Discovery of non-climacteric and suppressed climacteric bud sport mutations originating from a climacteric Japanese plum cultivar (Prunus salicina Lindl.). Frontiers in Plant Science, 2015, 6, 316.	3.6	72
16	Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection. BMC Genomics, 2011, 12, 569.	2.8	65
17	QTL mapping of pomological traits in peach and related species breeding germplasm. Molecular Breeding, 2015, 35, 1.	2.1	64
18	Genome-wide view of genetic diversity reveals paths of selection and cultivar differentiation in peach domestication. DNA Research, 2016, 23, 271-282.	3.4	64

THOMAS M GRADZIEL

#	Article	IF	CITATIONS
19	Genetic Characterization and Relatedness among California Almond Cultivars and Breeding Lines Detected by Randomly Amplified Polymorphic DNA (RAPD) Analysis. Journal of the American Society for Horticultural Science, 1998, 123, 381-387.	1.0	59
20	Identifying Pollen Incompatibility Groups in California Almond Cultivars. Journal of the American Society for Horticultural Science, 1994, 119, 106-109.	1.0	56
21	Application of Genomic and Quantitative Genetic Tools to Identify Candidate Resistance Genes for Brown Rot Resistance in Peach. PLoS ONE, 2013, 8, e78634.	2.5	55
22	The origin and dissemination of the cultivated almond as determined by nuclear and chloroplast SSR marker analysis. Scientia Horticulturae, 2010, 125, 593-601.	3.6	49
23	Electrophoretic and Immunological Analyses of Almond (<i>Prunus dulcis</i> L.) Genotypes and Hybrids. Journal of Agricultural and Food Chemistry, 2001, 49, 2043-2052.	5.2	48
24	Phenotypic diversity among local Spanish and foreign peach and nectarine [Prunus persica (L.) Batsch] accessions. Euphytica, 2014, 197, 261-277.	1.2	48
25	QTL mapping and breeding value estimation through pedigree-based analysis of fruit size and weight in four diverse peach breeding programs. Tree Genetics and Genomes, 2016, 12, 1.	1.6	46
26	Relationships among Peach, Almond, and Related Species as Detected by Simple Sequence Repeat Markers. Journal of the American Society for Horticultural Science, 2003, 128, 667-671.	1.0	43
27	Stylar ribonucleases in almond: correlation with and prediction of incompatibility genotypes. Plant Breeding, 2003, 122, 70-76.	1.9	41
28	Genetic diversity of some wild almonds and related Prunus species revealed by SSR and EST-SSR molecular markers. Plant Systematics and Evolution, 2012, 298, 173-192.	0.9	41
29	A practical method for almond cultivar identification and parental analysis using simple sequence repeat markers. Euphytica, 2009, 168, 41-48.	1.2	40
30	Leucoanthocyanidin dioxygenase gene (PpLDOX): a potential functional marker for cold storage browning in peach. Tree Genetics and Genomes, 2008, 4, 543-554.	1.6	37
31	Methylation of the S f locus in almond is associated with S-RNase loss of function. Plant Molecular Biology, 2014, 86, 681-689.	3.9	37
32	BREEDING FOR SELF-FERTILITY IN CALIFORNIA ALMOND CULTIVARS. Acta Horticulturae, 1998, , 109-117.	0.2	34
33	The delay of flowering time in almond: a review of the combined effect of adaptation, mutation and breeding. Euphytica, 2017, 213, 1.	1.2	34
34	Low Temperature Storage of Almond Pollen. Hortscience: A Publication of the American Society for Hortcultural Science, 2002, 37, 691-692.	1.0	33
35	Sexual polyembryony in almond. Sexual Plant Reproduction, 2003, 16, 135-139.	2.2	31
36	Correlations between quantitative tree and fruit almond traits and their implications for breeding. Scientia Horticulturae, 2010, 125, 323-331.	3.6	30

THOMAS M GRADZIEL

#	Article	IF	CITATIONS
37	Two Novel Self-compatible S Haplotypes in Peach (Prunus persica). Japanese Society for Horticultural Science, 2014, 83, 203-213.	0.8	30
38	High Relative Humidity Reduces Anther Dehiscence in Apricot, Peach, and Almond. Hortscience: A Publication of the American Society for Hortcultural Science, 1999, 34, 322-325.	1.0	30
39	Almond. , 2007, , 229-242.		27
40	Shell Seal Breakdown in Almond is Associated with the Site of Secondary Ovule Abortion. Journal of the American Society for Horticultural Science, 2002, 127, 69-74.	1.0	26
41	Effect prediction of identified SNPs linked to fruit quality and chilling injury in peach [Prunus persica (L.) Batsch]. Plant Molecular Biology, 2013, 81, 161-174.	3.9	23
42	Genome-wide DNA-(de)methylation is associated with Noninfectious Bud-failure exhibition in Almond (Prunus dulcis [Mill.] D.A.Webb). Scientific Reports, 2017, 7, 42686.	3.3	23
43	Measuring Flesh Color Variability among Processing Clingstone Peach Genotypes Differing in Carotenoid Composition. Journal of the American Society for Horticultural Science, 1998, 123, 433-437.	1.0	23
44	Cloning and Characterization of a Self-compatible Sf Haplotype in Almond [Prunus dulcis (Mill.) D.A. Webb. syn. P. amygdalus Batsch] to Resolve Previous Confusion in Its Sf-RNase Sequence. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 609-613.	1.0	22
45	Changes in Susceptibility to Brown Rot with Ripening in Three Clingstone Peach Genotypes. Journal of the American Society for Horticultural Science, 1994, 119, 101-105.	1.0	21
46	Resistance to Plum Pox Virus (Dideron Isolate RB3.30) in a Group of California Almonds and Transfer of Resistance to Peach. Journal of the American Society for Horticultural Science, 2004, 129, 544-548.	1.0	21
47	Almond (Prunus dulcis) Breeding. , 2009, , 1-31.		20
48	Breeding Plantation Tree Crops: Temperate Species. , 2009, , .		20
49	Susceptibility of California Almond Cultivars to Aflatoxigenic Aspergillus flavus. Hortscience: A Publication of the American Society for Hortcultural Science, 1994, 29, 33-35.	1.0	20
50	Heterogeneity in the entire genome for three genotypes of peach [Prunus persica (L.) Batsch] as distinguished from sequence analysis of genomic variants. BMC Genomics, 2013, 14, 750.	2.8	19
51	Multidimensional Analysis of S-alleles from Cross-incompatible Groups of California Almond Cultivars. Journal of the American Society for Horticultural Science, 2006, 131, 632-636.	1.0	19
52	Effects of processing and storage on almond (Prunus dulcis L.) amandin immunoreactivity. Food Research International, 2017, 100, 87-95.	6.2	17
53	Aflatoxin Production among Almond Genotypes Is Not Related to Either Kernel Oil Composition or Aspergillus flavus Growth Rate. Hortscience: A Publication of the American Society for Hortcultural Science, 2000, 35, 937-939.	1.0	17
54	Noninfectious Bud Failure in `Carmel' Almond: I. Pattern of Development in Vegetative Progeny Trees. Journal of the American Society for Horticultural Science, 2004, 129, 244-249.	1.0	17

#	Article	IF	CITATIONS
55	Overcoming unilateral breeding barriers between Lycopersicon peruvianum and cultivated tomato, Lycopersicon esculentum. Euphytica, 1991, 54, 1-9.	1.2	16

 $_{56}$ Influence of year and genetic factors on chilling injury susceptibility in peach (Prunus persica (L.)) Tj ETQq0 0 0 rgBT $_{1.2}^{IO}$ verlock 10 Tf 50 7

57	†Winters' Almond: An Early-blooming, Productive, and High-quality Pollenizer for †Nonpareil'. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 1725-1727.	1.0	16
58	Solanum lycopersicoides gene introgression to tomato, Lycopersicon esculentum, through the systematic avoidance and suppression of breeding barriers. Sexual Plant Reproduction, 1989, 2, 43.	2.2	15
59	Semidwarf Growth Habit in Clingstone Peach with Desirable Tree and Fruit Qualities. Hortscience: A Publication of the American Society for Hortcultural Science, 1993, 28, 1045-1047.	1.0	15
60	Whole-genome sequence and methylome profiling of the almond [<i>Prunus dulcis</i> (Mill.) D.A. Webb] cultivar †Nonpareil'. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	14
61	Improved technique for counting chromosomes in almond. Scientia Horticulturae, 2005, 105, 139-143.	3.6	13
62	Hull Split Date and Shell Seal in Relation to Navel Orangeworm (Lepidoptera: Pyralidae) Infestation of Almonds. Journal of Economic Entomology, 2011, 104, 965-969.	1.8	13
63	Genomics of Almond. , 2009, , 187-219.		12
64	Effects of Peach Cultivar on Enzymatic Browning Following Cell Damage from High-Pressure Processing. Journal of Agricultural and Food Chemistry, 2016, 64, 7606-7614.	5.2	11
65	Screening for Aspergillus flavus Resistance in Almond. Hortscience: A Publication of the American Society for Hortcultural Science, 2003, 38, 266-268.	1.0	11
66	Exotic genes for solving emerging peach production challenges. Scientia Horticulturae, 2022, 295, 110801.	3.6	11
67	Breakdown of self-incompatibility during pistil development in Lycopersicon peruvianum by modified bud pollination. Sexual Plant Reproduction, 1989, 2, 38.	2.2	10
68	Almond. , 2012, , 697-728.		10
69	First genetic linkage map of chilling injury susceptibility in peach (Prunus persica (L.) Batsch) fruit with SSR and SNP markers. Journal of Plant Science and Molecular Breeding, 2012, 1, 3.	1.2	10
70	Discriminating ability of molecular markers and morphological characterization in the establishment of genetic relationships in cultivated genotypes of almond and related wild species. Journal of Forestry Research, 2009, 20, 183-194.	3.6	9
71	Register of New Fruit and Nut Varieties List 40. Hortscience: A Publication of the American Society for Hortcultural Science, 2000, 35, 812-826.	1.0	9
72	Short-term Storage of Almond Pollen. Hortscience: A Publication of the American Society for Hortcultural Science, 2000, 35, 1151-1152.	1.0	9

THOMAS M GRADZIEL

#	Article	IF	CITATIONS
73	Seed germination and seedling establishment of some wild almond species. African Journal of Biotechnology, 2011, 10, 7780-7786.	0.6	8
74	Application of mouse monoclonal antibody (mAb) 4C10-based enzyme-linked immunosorbent assay (ELISA) for amandin detection in almond (Prunus dulcis L.) genotypes and hybrids. LWT - Food Science and Technology, 2015, 60, 535-543.	5.2	8
75	Comparison of Laboratoryâ€Developed and Commercial Monoclonal Antibodyâ€Based Sandwich Enzymeâ€Linked Immunosorbent Assays for Almond (<i>Prunus dulcis</i>) Detection and Quantification. Journal of Food Science, 2017, 82, 2504-2515.	3.1	8
76	Application of a Bayesian ordinal animal model for the estimation of breeding values for the resistance to <i>Monilinia fruticola</i> (G.Winter) Honey in progenies of peach [<i>Prunus persica</i> (L.) Batsch]. Breeding Science, 2017, 67, 110-122.	1.9	8
77	Different Genes for Different Folks in Tree Crops: What Works and What Does Not. Hortscience: A Publication of the American Society for Hortcultural Science, 2002, 37, 281-286.	1.0	8
78	Rooting response of Prunus wild relative semi-hardwood cuttings to indole-3-butyric acid potassium salt (KIBA). Scientia Horticulturae, 2020, 263, 109144.	3.6	7
79	Redomesticating Almond to Meet Emerging Food Safety Needs. Frontiers in Plant Science, 2020, 11, 778.	3.6	7
80	Propagation from Basal Epicormic Meristems Remediates an Aging-Related Disorder in Almond Clones. Horticulturae, 2019, 5, 28.	2.8	6
81	â€~Sweetheart' Almond: A Fully Cross-compatible Pollenizer for the Early â€~Nonpareil' Bloom that Exhibits Very High â€~Marcona'-type Kernel Quality. Hortscience: A Publication of the American Society for Hortcultural Science, 2013, 48, 1320-1322.	1.0	6
82	In vivo Micrografts in Almond and Their Application in Breeding Programs. HortTechnology, 2001, 11, 313-315.	0.9	6
83	Traditional Genetics and Breeding. , 2012, , 22-54.		5
84	Identification of Putative Markers of Non-infectious Bud Failure in Almond [Prunus dulcis (Mill.) D.A. Webb] Through Genome Wide DNA Methylation Profiling and Gene Expression Analysis in an Almond × Peach Hybrid Population. Frontiers in Plant Science, 2022, 13, 804145.	3.6	5
85	The Impact of Maturity Stage on Cell Membrane Integrity and Enzymatic Browning Reactions in High Pressure Processed Peaches (<i>Prunus persica</i>). Journal of Agricultural and Food Chemistry, 2016, 64, 7216-7224.	5.2	4
86	An roGFP2-Based Bacterial Bioreporter for Redox Sensing of Plant Surfaces. Phytopathology, 2020, 110, 297-308.	2.2	4
87	Phylogenetic relationships among the first and second introns of selected Prunus S-RNase genes. Canadian Journal of Plant Science, 2015, 95, 1145-1154.	0.9	3
88	Propagation of an Epigenetic Age-Related Disorder in Almond Is Governed by Vegetative Bud Ontogeny Rather Than Chimera-Type Cell Lineage. Horticulturae, 2021, 7, 190.	2.8	3
89	Genomic Designing for New Climate-Resilient Almond Varieties. , 2020, , 1-21.		3
90	Resistance to <i>Aspergillus flavus</i> and <i>Aspergillus parasiticus</i> in Almond Advanced Selections and Cultivars and Its Interaction with the Aflatoxin Biocontrol Strategy. Plant Disease, 2022, 106, 504-509.	1.4	2

#	Article	IF	CITATIONS
91	'Nickels' Almond × Peach Hybrid Clonal Rootstock. Hortscience: A Publication of the American Society for Hortcultural Science, 2002, 37, 415-417.	1.0	2
92	â€~Vilmos' Peach: A New and Improved "Stay-ripe―Processing Clingstone Peach Ripening in the â€~Andro Maturity Season. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 2078-2080.	oss' 1.0	2
93	Teaching Principles of Linkage and Gene Mapping with the Tomato. American Biology Teacher, 1980, 42, 16-22.	0.2	1
94	Interspecific Periclinal Chimeras as a Strategy for Cultivar Development. , 2016, , 235-269.		1
95	482 In Vivo Micrografts in Almond (Prunus dulcis). Hortscience: A Publication of the American Society for Hortcultural Science, 2000, 35, 477C-477.	1.0	1
96	â€~Lilleland' Peach: A High Case-yield Processing Clingstone Peach for the â€~Halford' Maturity Period. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 542-543.	1.0	1
97	â€~Kester' Almond: A Pollenizer for the Late â€~Nonpareil' Bloom with High Yield and Kernel Quality. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 2260-2261.	1.0	1
98	Establishing Breeding Programmes for New Crops: Lessons from the Eastern Black Walnut Programme. Outlook on Agriculture, 2001, 30, 195-203.	3.4	0
99	Candidate Gene Analysis of Internal Breakdown in Peach. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1147A-1147.	1.0	0
100	â€~Goodwin' Peach: a Processing Clingstone Peach Ripening in the â€~Dixon'–â€~Andross' Maturity Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 1901-1903.	Season. 1.0	0
101	THE EFFECT OF ENFORCED SELFING ON RESULTANT SEED AND SEEDLING QUALITY IN THE SELF-INCOMPATIBLE ALMOND VARIETY NONPAREIL. Hortscience: A Publication of the American Society for Hortcultural Science, 1992, 27, 658b-658.	1.0	0
102	523 PB 489 INCORPORATION OF USEFUL TRAITS FROM NATIVE ALMOND SPECIES INTO CULTIVATED ALMOND VARIETIES. II. GENE INTROGRESSION. Hortscience: A Publication of the American Society for Hortcultural Science, 1994, 29, 506d-506.	1.0	0
103	034 INCORPORATION OF USEFUL TRAITS FROM NATIVE ALMOND SPECIES INTO CULTIVATED ALMOND VARIETIES. Hortscience: A Publication of the American Society for Hortcultural Science, 1994, 29, 432e-432.	1.0	0
104	489 Detection of Hidden Sectorial Chimeras in Almond Shoots through Distortions in Flower Symmetry. Hortscience: A Publication of the American Society for Hortcultural Science, 1999, 34, 529C-529.	1.0	0
105	â€~Kader' Peach: A Processing Clingstone Peach with Improved Harvest Quality and Disease Resistance, Ripening in the â€~Dixon' Maturity Season. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 754-757.	1.0	0