
Bénédicte Charrier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/345118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeted Laser Ablation in the Embryo of Saccharina latissima . Journal of Visualized Experiments, 2022, , .	0.3	0
2	Preparation of Zygotes and Embryos of the Kelp Saccharina latissima for Cell Biology Approaches. Bio-protocol, 2021, 11, .	0.4	4
3	Growth and Labelling of Cell Wall Components of the Brown Alga Ectocarpus in Microfluidic Chips. Frontiers in Marine Science, 2021, 8, .	2.5	1
4	Development and objectives of the PHYCOMORPH European Guidelines for the Sustainable Aquaculture of Seaweeds (PEGASUS). Botanica Marina, 2020, 63, 5-16.	1.2	43
5	Design Principles of Branching Morphogenesis in Filamentous Organisms. Current Biology, 2019, 29, R1149-R1162.	3.9	22
6	Alginates along the filament of the brown alga Ectocarpus help cells cope with stress. Scientific Reports, 2019, 9, 12956.	3.3	26
7	Gazing at Cell Wall Expansion under a Golden Light. Trends in Plant Science, 2019, 24, 130-141.	8.8	16
8	The brown algal mode of tip growth: Keeping stress under control. PLoS Biology, 2019, 17, e2005258.	5.6	28
9	Insights into the Evolution of Multicellularity from the Sea Lettuce Genome. Current Biology, 2018, 28, 2921-2933.e5.	3.9	134
10	Dynamic and microscale mapping of cell growth. , 2018, , 349-364.		1
11	Actin fluorescent staining in the filamentous brown alga Ectocarpus siliculosus. , 2018, , 365-379.		0
12	Morphoelasticity in the development of brown alga <i>Ectocarpus siliculosus</i> : from cell rounding to branching. Journal of the Royal Society Interface, 2017, 14, 20160596.	3.4	11
13	Surfing amongst Oil-Tankers: Connecting Emerging Research Fields to the Current International Landscape. Trends in Plant Science, 2017, 22, 1-3.	8.8	11
14	Furthering knowledge of seaweed growth and development to facilitate sustainable aquaculture. New Phytologist, 2017, 216, 967-975.	7.3	64
15	Production of genetically and developmentally modified seaweeds: exploiting the potential of artificial selection techniques. Frontiers in Plant Science, 2015, 6, 127.	3.6	40
16	Localization of causal locus in the genome of the brown macroalga Ectocarpus: NGS-based mapping and positional cloning approaches. Frontiers in Plant Science, 2015, 6, 68.	3.6	5
17	The green seaweed Ulva: a model system to study morphogenesis. Frontiers in Plant Science, 2015, 6, 72.	3.6	173
18	Laser capture microdissection in Ectocarpus siliculosus: the pathway to cell-specific transcriptomics in brown algae. Frontiers in Plant Science, 2015, 6, 54.	3.6	11

Bénédicte Charrier

#	Article	IF	CITATIONS
19	Brown algal morphogenesis: atomic force microscopy as a tool to study the role of mechanical forces. Frontiers in Plant Science, 2014, 5, 471.	3.6	13
20	Computational prediction and experimental validation of microRNAs in the brown alga Ectocarpus siliculosus. Nucleic Acids Research, 2014, 42, 417-429.	14.5	20
21	Understanding ââ,¬Å"greenââ,¬Â•multicellularity: do seaweeds hold the key?. Frontiers in Plant Science, 2014, 5, 737.	3.6	19
22	Genome structure and metabolic features in the red seaweed <i>Chondrus crispus</i> shed light on evolution of the Archaeplastida. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5247-5252.	7.1	307
23	Culture Methods and Mutant Generation in the Filamentous Brown Algae Ectocarpus siliculosus. Methods in Molecular Biology, 2013, 959, 323-332.	0.9	15
24	Plant Proteus: brown algal morphological plasticity and underlying developmental mechanisms. Trends in Plant Science, 2012, 17, 468-477.	8.8	63
25	The Ectocarpus Genome and Brown Algal Genomics. Advances in Botanical Research, 2012, 64, 141-184.	1.1	18
26	Space-time decoupling in the branching process in the mutant é <i>toile</i> of the filamentous brown alga <i>Ectocarpus siliculosus</i> . Plant Signaling and Behavior, 2011, 6, 1889-1892.	2.4	6
27	<i>ETOILE</i> Regulates Developmental Patterning in the Filamentous Brown Alga <i>Ectocarpus siliculosus</i> Â. Plant Cell, 2011, 23, 1666-1678.	6.6	48
28	The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 2010, 465, 617-621.	27.8	774
29	Auxin Metabolism and Function in the Multicellular Brown Alga <i>Ectocarpus siliculosus</i> Â Â. Plant Physiology, 2010, 153, 128-144.	4.8	103
30	Normalisation genes for expression analyses in the brown alga model Ectocarpus siliculosus. BMC Molecular Biology, 2008, 9, 75.	3.0	93
31	EARLY DEVELOPMENT PATTERN OF THE BROWN ALGA <i>ECTOCARPUS SILICULOSUS</i> (ECTOCARPALES,) Tj	ETQg1 1	0.784314 rg ^B 27
32	Development and physiology of the brown alga <i>Ectocarpus siliculosus</i> : two centuries of research. New Phytologist, 2008, 177, 319-332.	7.3	128
33	A stochastic 1D nearest-neighbour automaton models early development of the brown alga Ectocarpus siliculosus. Functional Plant Biology, 2008, 35, 1014.	2.1	11
34	Life-cycle-generation-specific developmental processes are modified in the <i>immediate upright</i> mutant of the brown alga <i>Ectocarpus siliculosus</i> . Development (Cambridge), 2008, 135, 1503-1512.	2.5	106
35	Complex life cycles of multicellular eukaryotes: New approaches based on the use of model organisms. Gene, 2007, 406, 152-170.	2.2	127
36	The Arabidopsis thaliana GSK3/Shaggy like kinase AtSK3-2 modulates floral cell expansion. Plant Molecular Biology, 2007, 64, 113-124.	3.9	33

Bénédicte Charrier

#	Article	IF	CITATIONS
37	Organization and Expression of the CSK3/Shaggy Kinase Gene Family in the Moss Physcomitrella patens Suggest Early Gene Multiplication in Land Plants and an Ancestral Response to Osmotic Stress. Journal of Molecular Evolution, 2005, 61, 99-113.	1.8	30
38	Real-time PCR: what relevance to plant studies?. Journal of Experimental Botany, 2004, 55, 1445-1454.	4.8	368
39	Expression Profiling of the Whole Arabidopsis Shaggy-Like Kinase Multigene Family by Real-Time Reverse Transcriptase-Polymerase Chain Reaction. Plant Physiology, 2002, 130, 577-590.	4.8	166
40	Co-silencing of homologous transgenes in tobacco. Molecular Breeding, 2000, 6, 407-419.	2.1	26
41	Transgenic Tobacco Plants Expressing the Drosophila Polycomb (Pc) Chromodomain Show Developmental Alterations: Possible Role of Pc Chromodomain Proteins in Chromatin-Mediated Gene Regulation in Plants. Plant Cell, 1999, 11, 1047-1060.	6.6	18
42	Bigfoot: a new family of MITE elements characterized from theMedicagogenus. Plant Journal, 1999, 18, 431-441.	5.7	41
43	Bigfoot: a new family of MITE elements characterized from the Medicago genus. Plant Journal, 1999, 18, 431.	5.7	25
44	Flavanone 3-hydroxylase (F3H) Expression and Flavonoid Localization in Nodules of Three Legume Plants Reveal Distinct Tissue Specificities. Molecular Plant-Microbe Interactions, 1998, 11, 924-932.	2.6	11
45	The expression pattern of alfalfa flavanone 3-hydroxylase promoter-gus fusion in Nicotiana benthamiana correlates with the presence of flavonoids detected in situ. Plant Molecular Biology, 1996, 30, 1153-1168.	3.9	13
46	New plant promoter and enhancer testing vectors. Molecular Breeding, 1995, 1, 419-423.	2.1	60
47	Molecular characterization and expression of alfalfa (Medicago sativa L.) flavanone-3-hydroxylase and dihydroflavonol-4-reductase encoding genes. Plant Molecular Biology, 1995, 29, 773-786.	3.9	58