Keiji Kuba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3450467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Peritumoral CD16b positive-neutrophil accumulation strongly correlates with regional lymph node metastasis in thoracic esophageal squamous cell cancer. Surgery, 2022, 171, 1535-1542.	1.9	4
2	Spatial transcriptome analysis revealed novel regulatory mechanism of tumor metastasis. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2022, 95, 2-O-045.	0.0	0
3	Therapeutic effects of angiotensin converting enzyme 2 (ACE2) enzyme activity on acute lung injury in COVID-19. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2022, 95, 2-0-041.	0.0	0
4	Highly susceptible SARS-CoV-2 model in CAG promoter–driven hACE2-transgenic mice. JCI Insight, 2021, 6, .	5.0	21
5	Incomplete antiviral treatment may induce longer durations of viral shedding during SARS-CoV-2 infection. Life Science Alliance, 2021, 4, e202101049.	2.8	14
6	Suppression of SARS-CoV-2-induced lung injury by ACE2-like carboxypeptidase B38-CAP in COVID-19 mouse model. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2021, 94, 2-P2-LB48.	0.0	0
7	ACE2-like carboxypeptidase B38-CAP protects from SARS-CoV-2-induced lung injury. Nature Communications, 2021, 12, 6791.	12.8	32
8	Angiotensin-Converting Enzyme 2 (ACE2) in the Pathogenesis of ARDS in COVID-19. Frontiers in Immunology, 2021, 12, 732690.	4.8	34
9	Virus database annotations assist in tracing information on patients infected with emerging pathogens. Informatics in Medicine Unlocked, 2020, 21, 100442.	3.4	3
10	Eosinophils promote corneal wound healing via the 12/15â€lipoxygenase pathway. FASEB Journal, 2020, 34, 12492-12501.	0.5	18
11	B38-CAP is a bacteria-derived ACE2-like enzyme that suppresses hypertension and cardiac dysfunction. Nature Communications, 2020, 11, 1058.	12.8	48
12	Essential functions of the CNOT7/8 catalytic subunits of the CCR4-NOT complex in mRNA regulation and cell viability. RNA Biology, 2020, 17, 403-416.	3.1	27
13	m ⁶ A demethylase ALKBH5 promotes proliferation of esophageal squamous cell carcinoma associated with poor prognosis. Genes To Cells, 2020, 25, 547-561.	1.2	37
14	The CCR4–NOT complex maintains liver homeostasis through mRNA deadenylation. Life Science Alliance, 2020, 3, e201900494.	2.8	17
15	The CCR4–NOT Deadenylase Complex Maintains Adipocyte Identity. International Journal of Molecular Sciences, 2019, 20, 5274.	4.1	11
16	Genomeâ€Scale CRISPR/Cas9 Screening Reveals Squalene Epoxidase as a Susceptibility Factor for Cytotoxicity of Malforminâ€A1. ChemBioChem, 2019, 20, 1563-1568.	2.6	1
17	Loss of Apelin Augments Angiotensin II-Induced Cardiac Dysfunction and Pathological Remodeling. International Journal of Molecular Sciences, 2019, 20, 239.	4.1	37
18	Apelin and Elabela/Toddler; double ligands for APJ/Apelin receptor in heart development, physiology, and pathology. Peptides, 2019, 111, 62-70.	2.4	65

Κειji Kuba

#	Article	IF	CITATIONS
19	A bacteria-derived ACE2-like enzyme suppresses cardiac remodeling and dysfunction in mice Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 2-YIA-09.	0.0	0
20	The CCR4-NOT deadenylase complex controls Atg7-dependent cell death and heart function. Science Signaling, 2018, 11, .	3.6	51
21	Involvement of RSK1 activation in malformin-enhanced cellular fibrinolytic activity. Scientific Reports, 2018, 8, 5472.	3.3	5
22	ELABELA-APJ axis protects from pressure overload heart failure and angiotensin II-induced cardiac damage. Cardiovascular Research, 2017, 113, 760-769.	3.8	111
23	Loss of Apela Peptide in Mice Causes Low Penetrance Embryonic Lethality and Defects in Early Mesodermal Derivatives. Cell Reports, 2017, 20, 2116-2130.	6.4	53
24	Structure–activity relationship of cyclic pentapeptide malformins as fibrinolysis enhancers. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5267-5271.	2.2	11
25	Interaction of CCR4–NOT with EBF1 regulates gene-specific transcription and mRNA stability in B lymphopoiesis. Genes and Development, 2016, 30, 2310-2324.	5.9	29
26	Cationic nanoparticles directly bind angiotensin-converting enzyme 2 and induce acute lung injury in mice. Particle and Fibre Toxicology, 2015, 12, 4.	6.2	44
27	The Arachidonic Acid Metabolome Serves as a Conserved Regulator of Cholesterol Metabolism. Cell Metabolism, 2014, 20, 787-798.	16.2	92
28	The Lipid Mediator Protectin D1 Inhibits Influenza Virus Replication and Improves Severe Influenza. Cell, 2013, 153, 112-125.	28.9	399
29	Multiple Functions of Angiotensin-Converting Enzyme 2 and Its Relevance in Cardiovascular Diseases. Circulation Journal, 2013, 77, 301-308.	1.6	162
30	Apelin is a positive regulator of ACE2 in failing hearts. Journal of Clinical Investigation, 2013, 123, 5203-5211.	8.2	143
31	Apelin Treatment Increases Complete Fatty Acid Oxidation, Mitochondrial Oxidative Capacity, and Biogenesis in Muscle of Insulin-Resistant Mice. Diabetes, 2012, 61, 310-320.	0.6	173
32	ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature, 2012, 487, 477-481.	27.8	1,035
33	Trilogy of ACE2: A peptidase in the renin–angiotensin system, a SARS receptor, and a partner for amino acid transporters. , 2010, 128, 119-128.		400
34	A Global In Vivo Drosophila RNAi Screen Identifies NOT3 as a Conserved Regulator of Heart Function. Cell, 2010, 141, 142-153.	28.9	199
35	The role of ACE2 in pulmonary diseases-relevance for the nephrologist. Nephrology Dialysis Transplantation, 2009, 24, 1362-1365.	0.7	26
36	Tissue-Specific Amino Acid Transporter Partners ACE2 and Collectrin Differentially Interact With Hartnup Mutations. Gastroenterology, 2009, 136, 872-882.e3.	1.3	239

Κειji Kuba

#	Article	IF	CITATIONS
37	Impaired Heart Contractility in Apelin Gene–Deficient Mice Associated With Aging and Pressure Overload. Circulation Research, 2007, 101, e32-42.	4.5	260
38	Angiotensin-converting enzyme 2 in lung diseases. Current Opinion in Pharmacology, 2006, 6, 271-276.	3.5	342
39	Lessons from SARS: control of acute lung failure by the SARS receptor ACE2. Journal of Molecular Medicine, 2006, 84, 814-820.	3.9	120
40	A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature Medicine, 2005, 11, 875-879.	30.7	2,986
41	Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 2005, 436, 112-116.	27.8	2,264