Pedro Merino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3449876/publications.pdf

Version: 2024-02-01

243 papers 6,910 citations

71102 41 h-index 106344 65 g-index

323 all docs 323 docs citations

323 times ranked 4993 citing authors

#	Article	IF	CITATIONS
1	Catalytic Enantioselective Hydrophosphonylation of Aldehydes and Imines. Advanced Synthesis and Catalysis, 2008, 350, 1195-1208.	4.3	241
2	Chemical Synthesis of Heterocyclicâ^'Sugar Nucleoside Analogues. Chemical Reviews, 2010, 110, 3337-3370.	47.7	211
3	Catalytic Enantioselective Azaâ€Henry Reactions. European Journal of Organic Chemistry, 2009, 2009, 2401-2420.	2.4	186
4	Organocatalyzed Asymmetricα-Aminoxylation of Aldehydes and Ketones—An Efficient Access to Enantiomerically Pureα-Hydroxycarbonyl Compounds, Diols, and Even Amino Alcohols. Angewandte Chemie - International Edition, 2004, 43, 2995-2997.	13.8	179
5	Enantioselective Organocatalytic Diels-Alder Reactions. Synthesis, 2010, 2010, 1-26.	2.3	154
6	Asymmetric organocatalytic synthesis of \hat{I}^3 -nitrocarbonyl compounds through Michael and Domino reactions. Tetrahedron: Asymmetry, 2010, 21, 2561-2601.	1.8	151
7	Synthesis of N-Benzyl Nitrones. Synthetic Communications, 1994, 24, 2537-2550.	2.1	131
8	Organocatalyzed Strecker reactions. Tetrahedron, 2009, 65, 1219-1234.	1.9	130
9	Nucleophilic Additions to Cyclic Nitrones en Route to Iminocyclitols – Total Syntheses of DMDP, 6â€deoxyâ€DMDP, DABâ€1, CYBâ€3, Nectrisine, and Radicamine B. European Journal of Organic Chemistry, 2008, 2008, 2929-2947.	, 2.4	119
10	Enantioselective 1,3-Dipolar Cycloaddition of Nitrones to Methacrolein Catalyzed by (Î-5-C5Me5)M{(R)-Prophos} Containing Complexes (M = Rh, Ir; (R)-Prophos =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5	0 382 Td ((1,2-bis(Dipł
11	Chemical Society, 2005, 127, 13386-13398. Stereoselective Homologation–Amination of Aldehydes by Addition of Their Nitrones to Câ€2 Metalated Thiazoles—A General Entry to αâ€Amino Aldehydes and Amino Sugars. Chemistry - A European Journal, 1995, 1, 505-520.	3.3	102
12	Catalytic Enantioselective Cloke–Wilson Rearrangement. Angewandte Chemie - International Edition, 2018, 57, 8225-8229.	13.8	86
13	Structural Insights into the Mechanism of Protein O-Fucosylation. PLoS ONE, 2011, 6, e25365.	2.5	85
14	Iterative Organometallic Addition to Chiral Hydroxylated Cyclic Nitrones:  Highly Stereoselective Syntheses of α,αâ€~ and α,α-Substituted Hydroxypyrrolidines. Organic Letters, 2003, 5, 4235-4238.	4.6	77
15	The Complete Characterization of a Rhodium Lewis Acidâ 'Dipolarophile Complex as an Intermediate for the Enantioselective Catalytic 1,3-Dipolar Cycloaddition of C,N-Diphenylnitrone to Methacrolein. Journal of the American Chemical Society, 2004, 126, 2716-2717.	13.7	77
16	Furan Oxidations in Organic Synthesis: Recent Advances and Applications. Current Organic Chemistry, 2007, 11, 1076-1091.	1.6	74
17	New Concise Total Synthesis of (+)-Lentiginosine and Some Structural Analogues. Journal of Organic Chemistry, 2005, 70, 6552-6555.	3.2	72
18	Synthesis of d-arabinose-derived polyhydroxylated pyrrolidine, indolizidine and pyrrolizidine alkaloids. Total synthesis of hyacinthacine A2. Tetrahedron, 2010, 66, 1220-1227.	1.9	72

#	Article	IF	CITATIONS
19	A DFT study on the 1,3-dipolar cycloaddition reactions of C-(methoxycarbonyl)-N-methyl nitrone with methyl acrylate and vinyl acetate. Tetrahedron, 2003, 59, 3581-3592.	1.9	69
20	Applications of Sugar Nitrones in Synthesis:  The Total Synthesis of (+)-Polyoxin J1. Journal of Organic Chemistry, 1997, 62, 5497-5507.	3.2	68
21	The Role of the Indole in Important Organocatalytic Enantioselective Friedel-Crafts Alkylation Reactions. Current Organic Chemistry, 2009, 13, 1585-1609.	1.6	65
22	New developments in nucleophilic additions to nitrones. Comptes Rendus Chimie, 2005, 8, 775-788.	0.5	63
23	Totally stereocontrolled synthesis of $\hat{l}\pm,\hat{l}^2$ -diamino acids by addition of Grignard reagents to nitrones derived from l -serine. Tetrahedron: Asymmetry, 1998, 9, 629-646.	1.8	62
24	Stereodivergent Approaches to the Synthesis of Isoxazolidine Analogues of α-Amino Acid Nucleosides. Total Synthesis of Isoxazolidinyl Deoxypolyoxin C and Uracil Polyoxin Câ€. Journal of Organic Chemistry, 2000, 65, 5575-5589.	3.2	61
25	Stereoselective Addition of 2-Furyllithium and 2-Thiazolyllithium to Sugar Nitrones. Synthesis of Carbon-Linked Glycoglycines. Journal of Organic Chemistry, 1997, 62, 5484-5496.	3.2	55
26	Direct vinylation and ethynylation of nitrones. Stereodivergent synthesis of allyl and propargyl amines. Tetrahedron: Asymmetry, 1996, 7, 1887-1890.	1.8	53
27	Dissecting the Essential Role of Anomeric \hat{l}^2 -Triflates in Glycosylation Reactions. Journal of the American Chemical Society, 2020, 142, 12501-12514.	13.7	52
28	1,3-Dipolar Cycloaddition of Furfuryl Nitrones with Acrylates. A Convenient Approach to Protected 4-Hydroxypyroglutamic Acids. Journal of Organic Chemistry, 2000, 65, 1590-1596.	3.2	49
29	Stereocontrol by diethylaluminum chloride in the addition of 2-lithiofuran and N-methyl-2-lithioimidazole to $\hat{l}\pm$ -alkoxy nitrones. Total synthesis of 5-O-carbamoylpolyoxamic acid Tetrahedron Letters, 1993, 34, 5479-5482.	1.4	48
30	Diastereoselective nucleophilic addition of acetylide to N-benzyl-2, nitrone (BIGN). Stereodivergent synthesis of \hat{l}^2 -hydroxy- $\hat{l}\pm$ -(hydroxyamino)- and \hat{l}^2 -hydroxy- $\hat{l}\pm$ -amino acids. Tetrahedron: Asymmetry, 1997, 8, 3489-3496.	1.8	48
31	Stereoselective Hydride Transfer by Arylâ€Alcohol Oxidase, a Member of the GMC Superfamily. ChemBioChem, 2012, 13, 427-435.	2.6	48
32	Experimental and theoretical study of the 1,3-dipolar cycloaddition between d-glyceraldehyde nitrones and acrylates. Diastereoselective approach to 4-hydroxy pyroglutamic acid derivatives. Tetrahedron: Asymmetry, 2002, 13, 173-190.	1.8	46
33	Zinc(II) Triflate-Controlled 1,3-Dipolar Cycloadditions ofC-(2-Thiazolyl)nitrones:Â Application to the Synthesis of a Novel Isoxazolidinyl Analogue of Tiazofurin. Journal of Organic Chemistry, 2005, 70, 8991-9001.	3.2	46
34	Stereoselective grignard reactions to \hat{l}_{\pm} -amino nitrones. Synthesis of optically active \hat{l}_{\pm} -aminohydroxylamines and 1,2-diamines. Tetrahedron: Asymmetry, 1997, 8, 2381-2401.	1.8	45
35	A comparative study of the stereoselective addition of trimethylsilyl cyanide and diethylaluminum cyanide to chiral cyclic nitrones. Tetrahedron: Asymmetry, 2003, 14, 367-379.	1.8	45
36	Sequential Nucleophilic Addition/Intramolecular Cycloaddition to Chiral Nonracemic Cyclic Nitrones: A Highly Stereoselective Approach to Polyhydroxynortropane Alkaloids. Journal of Organic Chemistry, 2011, 76, 4139-4143.	3.2	45

#	Article	IF	Citations
37	An Improved Synthesis of Ketonitrones. Synthetic Communications, 1995, 25, 2275-2284.	2.1	44
38	An efficient approach to enantiomeric isoxazolidinyl analogues of tiazofurin based on nitrone cycloadditions. Tetrahedron: Asymmetry, 2005, 16, 3865-3876.	1.8	44
39	Straightforward synthesis of enantiopure 2-aminomethyl and 2-hydroxymethyl pyrrolidines with complete stereocontrol. Tetrahedron Letters, 2005, 46, 1287-1290.	1.4	43
40	Thiourea catalyzed organocatalytic enantioselective Michael addition of diphenyl phosphite to nitroalkenes. Organic and Biomolecular Chemistry, 2011, 9, 2777.	2.8	43
41	Isoxazolidine analogues of pseudouridine: a new class of modified nucleosides. Tetrahedron, 2003, 59, 4733-4738.	1.9	42
42	Fully Stereoselective Nucleophilic Addition to a Novel Chiral PyrrolineN-Oxide: Total Syntheses of (2S,3R)-3-Hydroxy-3-methylproline and Its (2R)-Epimer. European Journal of Organic Chemistry, 2004, 2004, 776-782.	2.4	42
43	Computational Mechanistic Study of Thionation of Carbonyl Compounds with Lawesson's Reagent. Journal of Organic Chemistry, 2016, 81, 7733-7740.	3.2	40
44	Diastereoselective Hydrocyanation of Chiral Nitrones. Synthesis of Novel α-(Hydroxyamino) Nitriles. Journal of Organic Chemistry, 1996, 61, 9028-9032.	3.2	39
45	1,3-Dipolar cycloaddition of C-(2-thiazolyl)nitrones to chiral acrylates. Synthesis of enantiopure α-amino-2-alkylthiazoles and 5-formylpyrrolidin-2-ones. Tetrahedron, 1997, 53, 3301-3318.	1.9	39
46	Stereocontrolled Addition of 2-Thiazolyl Organometallic Reagents to C-Galactopyranosylnitrone. A Formal Synthesis of Destomic Acid and Lincosamine. Synlett, 1993, 1993, 78-80.	1.8	38
47	Enantiodivergent Approach tod- andl-SecondaryN-Hydroxy-α-amino Acids by UsingN-Benzyl-2,3-O-isopropylidene-d- glyceraldehyde Nitrone as an EffectiveN-Hydroxyglycine Cation Equivalent. Journal of Organic Chemistry, 1998, 63, 2371-2374.	3.2	38
48	Stereoselective Synthesis and Biological Evaluations of Novel 3′-Deoxy-4′-azaribonucleosides as Inhibitors of Hepatitis C Virus RNA Replication. Journal of Medicinal Chemistry, 2009, 52, 4054-4057.	6.4	38
49	The small molecule luteolin inhibits N-acetyl-α-galactosaminyltransferases and reduces mucin-type O-glycosylation of amyloid precursor protein. Journal of Biological Chemistry, 2017, 292, 21304-21319.	3.4	38
50	Asymmetric Addition Reactions of Lithium (Trimethylsilyl)acetylide with Chiral α-Amino Nitrones. Synthesis of Diastereomerically PureN-Hydroxy-α-amino Acidsâ€. Journal of Organic Chemistry, 1998, 63, 5627-5630.	3.2	37
51	A DFT study on the 1,3-dipolar cycloaddition reactions of C-(hetaryl) nitrones with methyl acrylate and vinyl acetate. Tetrahedron, 2007, 63, 1448-1458.	1.9	37
52	Enantio―and Diastereoselective Nucleophilic Addition of <i>N</i> à€ <i>tert</i> à€Butylhydrazones to Isoquinolinium Ions through Anionâ€Binding Catalysis. Angewandte Chemie - International Edition, 2021, 60, 5096-5101.	13.8	37
53	Stereoselective aminohomologation of chiral \hat{l} ±-alkoxy aldehydes via thiazole addition to nitrones. Application to the synthesis of N-acetyl-d-mannosamine. Tetrahedron Letters, 1992, 33, 4221-4224.	1.4	36
54	Addition of 2-Lithiofuran to Chiral α-Alkoxy Nitrones; a Stereoselective Approach to α-Epimeric β-Alkoxy-α-amino Acids. Synthesis, 1994, 1994, 1450-1456.	2.3	36

#	Article	IF	CITATIONS
55	Stereocontrolled addition of Grignard reagents to α-alkoxy nitrones. Synthesis of syn and anti 3-amino-1,2-diols. Tetrahedron: Asymmetry, 1997, 8, 1725-1729.	1.8	36
56	An investigation of the Lewis acid mediated 1,3-dipolar cycloaddition between N-benzyl-C-(2-pyridyl)nitrone and allylic alcohol. Direct entry to isoxazolidinyl C-nucleosidesElectronic supplementary information (ESI) available: optimized geometries (PDB) Tj ETQq0 0 0 rg	BT Ø verlo	ock 1.0 Tf 50 6
	1, 2336.		
57	Stereoselective Allylation Reactions of Imines and Related Compounds. Current Organic Synthesis, 2005, 2, 479-498.	1.3	36
58	Catalytic Enantioselective Cloke–Wilson Rearrangement. Angewandte Chemie, 2018, 130, 8357-8361.	2.0	36
59	Enantioselective synthesis of 4-hydroxy-d-pyroglutamic acid derivatives by an asymmetric 1,3-dipolar cycloaddition. Tetrahedron: Asymmetry, 2002, 13, 167-172.	1.8	35
60	Nucleophilic Additions and Redox Reactions of Polyhydroxypyrroline N-Oxides on the Way to Pyrrolidine Alkaloids: Total Synthesis of Radicamine B. Synlett, 2007, 2007, 2651-2654.	1.8	35
61	A Native Ternary Complex Trapped in a Crystal Reveals the Catalytic Mechanism of a Retaining Glycosyltransferase. Angewandte Chemie - International Edition, 2015, 54, 9898-9902.	13.8	35
62	Stereocontrolled addition of 2-lithiothiazole to the nitrone derived from d-glyceraldehyde acetonide. A revision and extension. Tetrahedron Letters, 1993, 34, 5475-5478.	1.4	34
63	Nucleophilic additions of Grignard reagents to N-benzyl-2,3-O-isopropylidene-D-glyceraldehyde nitrone (BIGN). Synthesis of (2S,3R) and (2S,3S)-3-phenylisoserine. Tetrahedron, 1998, 54, 12301-12322.	1.9	34
64	Modified nucleosides from nitrones: a new and efficient stereoselective approach to isoxazolidinyl thymidine derivatives. Chemical Communications, 1998, , 493-494.	4.1	34
65	Exploring Nitrone Chemistry: Towards the Enantiodivergent Synthesis of 6â€Substituted 4â€Hydroxypipecolic Acid Derivatives. European Journal of Organic Chemistry, 2008, 2008, 3943-3959.	2.4	34
66	Recent Advances on the Synthesis of Piperidines through Ruthenium-Catalyzed Ring-Closing Metathesis (RCM) Reactions. Heterocycles, 2012, 84, 75.	0.7	34
67	Stereocontrolled synthesis of 2,3-diaminobutanoic acids. Tetrahedron Letters, 1997, 38, 1813-1816.	1.4	33
68	A molecular electron density theory study of the $[3+2]$ cycloaddition reaction of nitrones with ketenes. Organic and Biomolecular Chemistry, 2017, 15, 1618-1627.	2.8	33
69	Construction of AllO-Alkoxy D-Tetrose and D-Pentose Stereoisomers from 2,3-O-Isopropylidene-D-glyceraldehyde Using 2-(Trimethylsilyl)thiazole as a Formyl Anion Equivalent. Synthesis, 1992, 1992, 201-210.	2.3	32
70	Lewis acid stereocontrolled additions of a silyl ketene acetal to 2,3-di-O-isopropylidene-d-glyceraldehyde nitrones. Synthesis of l-isoxazolidinyl nucleosides. Tetrahedron Letters, 2000, 41, 9239-9243.	1.4	32
71	Enantiodivergent Synthesis of d- and l-erythro-Sphingosines through Mannich-Type Reactions of N-Benzyl-2,3-O-isopropylidene-d-glyceraldehyde Nitrone. Journal of Organic Chemistry, 2006, 71, 4685-4688.	3.2	32
72	Heterocyclic Nucleosides: Chemical Synthesis and Biological Properties. Current Medicinal Chemistry, 2006, 13, 539-545.	2.4	32

#	Article	IF	Citations
73	Efficient Organocatalyst Supported on a Simple Ionic Liquid as a Recoverable System for the Asymmetric Diels–Alder Reaction in the Presence of Water. ChemCatChem, 2015, 7, 830-835.	3.7	32
74	Understanding Bond Formation in Polar One-Step Reactions. Topological Analyses of the Reaction between Nitrones and Lithium Ynolates. Journal of Organic Chemistry, 2015, 80, 4076-4083.	3.2	32
75	Organometallic gold(III) and gold(I) complexes as catalysts for the 1,3-dipolar cycloaddition to nitrones: synthesis of novel gold–nitrone derivatives. Journal of Organometallic Chemistry, 2004, 689, 1788-1795.	1.8	31
76	Current Developments in the Synthesis and Biological Activity of Aza-C-Nucleosides:Immucillins and Related Compounds. Current Medicinal Chemistry, 2008, 15, 954-967.	2.4	31
77	Recent Developments on Rotaxane-Based Shuttles. Current Organic Chemistry, 2009, 13, 448-481.	1.6	31
78	Mannich-Type Reactions of Nitrones, Oximes, and Hydrazones. Synlett, 2011, 2011, 1965-1977.	1.8	31
79	New mechanistic interpretations for nitrone reactivity. Organic and Biomolecular Chemistry, 2017, 15, 3364-3375.	2.8	31
80	Synthesis of 1,5-Functionalized 1,2,3-Triazoles Using Ionic Liquid/Iron(III) Chloride as an Efficient and Reusable Homogeneous Catalyst. Catalysts, 2018, 8, 364.	3.5	31
81	Total synthesis of thymine polyoxin C. Tetrahedron Letters, 1994, 35, 9439-9442.	1.4	29
82	Thiazoles. , 1996, , 373-474.		29
83	Diastereoselective synthesis of homo-N,O-nucleosides. Tetrahedron, 2004, 60, 441-448.	1.9	29
84	Revisiting oxime–nitrone tautomerism. Evidence of nitrone tautomer participation in oxime nucleophilic addition reactions. RSC Advances, 2016, 6, 22161-22173.	3.6	29
85	Enantioselective synthesis of N,O-psiconucleosides. Tetrahedron: Asymmetry, 2003, 14, 2419-2425.	1.8	28
86	Tunable Diastereoselection of Biased Rigid Systems by Lewis Acid Induced Conformational Effects: A Rationalization of the Vinylation of Cyclic Nitrones En Route to Polyhydroxylated Pyrrolidines. Chemistry - A European Journal, 2010, 16, 9910-9919.	3.3	28
87	Expanding the Limits of Organoboron Chemistry: Synthesis of Functionalized Arylboronates. Angewandte Chemie - International Edition, 2010, 49, 7164-7165.	13.8	28
88	A Friedel–Crafts alkylation mechanism using an aminoindanol-derived thiourea catalyst. Organic and Biomolecular Chemistry, 2014, 12, 4503-4510.	2.8	28
89	Experimental and theoretical evidences of 2-aza-Cope rearrangement of nitrones. Tetrahedron Letters, 2007, 48, 3385-3388.	1.4	27
90	Truncated Reverse Isoxazolidinyl Nucleosides: A New Class of Allosteric HIVâ€1 Reverse Transcriptase Inhibitors. ChemMedChem, 2012, 7, 565-569.	3.2	27

#	Article	IF	Citations
91	Ready access to enantiopure 5-substituted-3-pyrrolin-2-ones from N-benzyl-2,3-O-isopropylidene-d-glyceraldehyde nitrone (BIGN). Tetrahedron: Asymmetry, 1998, 9, 1759-1769.	1.8	26
92	Nucleophilic additions of lithiated allylphenylsulfone to nitrones: experimental and theoretical investigations. Tetrahedron, 2005, 61, 3335-3347.	1.9	26
93	DFT Investigation of the Mechanism of $\langle i \rangle E \langle i \rangle / \langle i \rangle Z \langle i \rangle$ Isomerization of Nitrones. Journal of Organic Chemistry, 2014, 79, 8358-8365.	3.2	26
94	Total synthesis of (+)-polyoxin J. Journal of the Chemical Society Chemical Communications, 1995, , 2127.	2.0	25
95	Understanding the high diastereofacial discrimination in nucleophilic additions to nitrones: the first ab initio study on the nucleophilic addition reactions of chiral nitrones with Grignard reagents. Tetrahedron, 2001, 57, 8125-8128.	1.9	25
96	Recent Advances on Asymmetric Nitroso Aldol Reaction. Synthesis, 2016, 48, 653-676.	2.3	25
97	Revealing Stepwise Mechanisms in Dipolar Cycloaddition Reactions: Computational Study of the Reaction between Nitrones and Isocyanates. Journal of Organic Chemistry, 2016, 81, 673-680.	3.2	25
98	High stereocontrol in the allylation of chiral non-racemic \hat{l}_{\pm} -alkoxy and \hat{l}_{\pm} -amino nitrones. Tetrahedron Letters, 2006, 47, 3311-3314.	1.4	24
99	Nitrones and nucleobase-containing spiro-isoxazolidines derived from isatin and indanone: solvent-free microwave-assisted stereoselective synthesis and theoretical calculations. RSC Advances, 2017, 7, 48980-48988.	3.6	24
100	Heterocyclic Nucleosides. Chemical Synthesis and Biological Properties. Anti-Infective Agents in Medicinal Chemistry, 2002, 1, 389-411.	0.9	24
101	Stereoselective synthesis of l-isoxazolidinyl thymidine from N-benzyl-1,2-di- O-isopropylidene- d-glyceraldehyde nitrone (BIGN). Tetrahedron: Asymmetry, 2000, 11, 1543-1554.	1.8	23
102	A General Method for the Vinylation of Nitrones. Synthesis of Allyl Hydroxylamines and Allyl Amines. Synthetic Communications, 2000, 30, 2989-3021.	2.1	23
103	A DFT Study of the Molecular Mechanisms of the Nucleophilic Addition of Ester-Derived Lithium Enolates and Silyl Ketene Acetals to Nitrones: Effects of the Lewis Acid Catalyst. European Journal of Organic Chemistry, 2006, 2006, 3464-3472.	2.4	23
104	CROSS-COUPLING REACTIONS FOR THE SYNTHESIS OF C-GLYCOSIDES AND RELATED COMPOUNDS. Heterocycles, 2012, 86, 791.	0.7	23
105	One-Pot Synthesis of Functionalized Carbazoles via a CAN-Catalyzed Multicomponent Process Comprising a C–H Activation Step. Journal of Organic Chemistry, 2017, 82, 7492-7502.	3.2	23
106	Enantioselective addition of Grignard reagents to a 2-thiazolyl nitrone. Tetrahedron: Asymmetry, 1996, 7, 667-670.	1.8	22
107	Highly diastereoselective nucleophilic addition of organometallic reagents to 2-pyrrolidinyl nitrones: a semiempirical approach. Tetrahedron: Asymmetry, 1999, 10, 1867-1871.	1.8	22
108	Introducing topology to assess the synchronicity of organic reactions. Dual reactivity of oximes with alkenes as a case study. Organic Chemistry Frontiers, 2017, 4, 1541-1554.	4.5	22

#	Article	IF	Citations
109	Tunable stereoselectivity in the addition of 2-lithiothiazole to L-serinal derived N-benzyl nitroe. Synthesis of C-2 epimer 2,3-diamino-4-hydroxybutanals. Journal of the Chemical Society Chemical Communications, 1994, , 1731.	2.0	21
110	Stereoselective addition of cyanide reagents to nitrones. Tetrahedron Letters, 1995, 36, 6949-6952.	1.4	21
111	Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space. ESAIM: Mathematical Modelling and Numerical Analysis, 2010, 44, 167-188.	1.9	21
112	Evasive Neutral 2â€Azaâ€Cope Rearrangements. Kinetic and Computational Studies with Cyclic Nitrones. European Journal of Organic Chemistry, 2013, 2013, 5721-5730.	2.4	21
113	Pivotal Neighboringâ€Group Participation in Substitution versus Elimination Reactions – Computational Evidence for Ion Pairs in the Thionation of Alcohols with Lawesson's Reagent. European Journal of Organic Chemistry, 2017, 2017, 1952-1960.	2.4	21
114	Regioselective Synthesis of 1,4,5â€Trisubstitutedâ€1,2,3â€Triazoles from Aryl Azides and Enaminones. European Journal of Organic Chemistry, 2019, 2019, 5725-5731.	2.4	21
115	Synthesis of unsymmetrical diheteroarylbenzenes: Benzoazole and quinazoline derivatives. Journal of Heterocyclic Chemistry, 1991, 28, 359-363.	2.6	20
116	Nitrones in Organic Synthesis. Synthesis of Secondary Allyl Amines. Synthetic Communications, 1994, 24, 2551-2555.	2.1	20
117	Efficient synthesis of (2R,3S)- and (2S,3S)-2-amino-1,3,4-butanetriols through stereodivergent hydroxymethylation of d-glyceraldehyde nitrones. Tetrahedron Letters, 2002, 43, 459-462.	1.4	20
118	Synthesis, Biological and In Silico Evaluation of Pure Nucleobase-Containing Spiro (Indane-Isoxazolidine) Derivatives as Potential Inhibitors of MDM2–p53 Interaction. Molecules, 2019, 24, 2909.	3.8	20
119	Asymmetric synthesis of an isoxazolidine nucleoside analog of thymine polyoxin C. Tetrahedron Letters, 1998, 39, 6411-6414.	1.4	19
120	1,3-Dipolar Cycloaddition between Hetaryl Nitrones and Methyl Acrylate: Theoretical Study and Application to the Synthesis of Functionalized Pyrrolidines. Heterocycles, 2000, 53, 861.	0.7	19
121	Azomethine Ylides from Nitrones: Using Catalytic <i>n</i> BuLi for the Totally Stereoselective Synthesis of <i>trans</i> â€2â€Alkylâ€3â€oxazolines. Chemistry - A European Journal, 2016, 22, 11527-11532.	3.3	19
122	Glycomimetics Targeting Glycosyltransferases: Synthetic, Computational and Structural Studies of Lessâ€Polar Conjugates. Chemistry - A European Journal, 2016, 22, 7215-7224.	3.3	19
123	Mechanistic Insights into the Mode of Action of Bifunctional Pyrrolidineâ€Squaramideâ€Derived Organocatalysts. Chemistry - A European Journal, 2016, 22, 884-889.	3.3	19
124	Rapid, efficient and solvent free microwave mediated synthesis of aldo- and ketonitrones. Arabian Journal of Chemistry, 2016, 9, 25-31.	4.9	19
125	Carboxylates as Nucleophiles in the Enantioselective Ringâ€Opening of Formylcyclopropanes under Iminium Ion Catalysis. Chemistry - A European Journal, 2018, 24, 8764-8768.	3.3	19
126	Chemoselectivity in the Oxidation of unsymmetrical Thioureas with NBS/sulfuric Acid: Benzothiazoles vs. 1,2,4-Thiadiazoles. Synthetic Communications, 1990, 20, 2327-2334.	2.1	18

#	Article	lF	Citations
127	A Facile Synthesis of Glycosyl Hydroxylamines. Synthetic Communications, 1997, 27, 3529-3537.	2.1	18
128	Hydroxylamine Oxygen as Nucleophile in Palladium(0)- and Palladium(II)-Catalyzed Allylic Alkylation: A Novel Access to Isoxazolidines. Synlett, 2007, 2007, 0944-0948.	1.8	18
129	Chemistry and Biology of Iminosugar Di- and Oligosaccharides. Current Chemical Biology, 2009, 3, 253-271.	0.5	18
130	Water-compatible one-pot organocatalytic asymmetric synthesis of cyclic nitrones. Application in intramolecular 1,3-dipolar cycloadditions. Tetrahedron Letters, 2011, 52, 5976-5979.	1.4	18
131	Chemical approaches to inhibitors of isoprenoid biosynthesis: targeting farnesyl and geranylgeranyl pyrophosphate synthases. RSC Advances, 2017, 7, 10947-10967.	3.6	18
132	Synergistic catalysis: enantioselective cyclopropanation of alkylidene benzoxazoles by Pd(<scp>ii</scp>) and secondary amine catalysis. Scope, limitations and mechanistic insight. Organic Chemistry Frontiers, 2018, 5, 806-812.	4.5	18
133	Polyalkoxy Nitrones as Chiral Building Blocks in Asymmetric Synthesis. Molecules, 1999, 4, 169-179.	3.8	17
134	1,3-Dipolar cycloaddition between N-benzyl-C-glycosyl nitrones and methyl acrylate en route to glycosyl pyrrolidines. Tetrahedron: Asymmetry, 2003, 14, 3731-3743.	1.8	17
135	Stereoselective synthesis of pyrrolidinyl glycines from nitrones: complementarity of nucleophilic addition and 1,3-dipolar cycloaddition. Tetrahedron Letters, 2006, 47, 5013-5016.	1.4	17
136	Racemic hemiacetals as oxygen-centered pronucleophiles triggering cascade 1,4-addition/Michael reaction through dynamic kinetic resolution under iminium catalysis. Development and mechanistic insights. Chemical Science, 2017, 8, 2904-2913.	7.4	17
137	Regioselectivity Change in the Organocatalytic Enantioselective (3+2) Cycloaddition with Nitrones through Cooperative Hydrogenâ€Bonding Catalysis/Iminium Activation. Chemistry - A European Journal, 2017, 23, 2764-2768.	3.3	17
138	Enantioselective Synthesis, DFT Calculations, and Preliminary Antineoplastic Activity of Dibenzo 1-Azaspiro [4.5] decanes on Drug-Resistant Leukemias. Journal of Organic Chemistry, 2019, 84, 2219-2233.	3.2	17
139	BrÃ,nsted Acid Catalyzed (4 + 2) Cyclocondensation of 3-Substituted Indoles with Donor–Acceptor Cyclopropanes. Organic Letters, 2021, 23, 2326-2331.	4.6	17
140	Synthesis of isoxazolidin-5-ones via stereocontrolled Michael additions of benzylhydroxylamine to l-serine derived \hat{l}_{\pm},\hat{l}^2 -unsaturated esters. Tetrahedron: Asymmetry, 1998, 9, 3945-3949.	1.8	16
141	Intramolecular 1,3-dipolar cycloaddition of N-alkenyl nitrones en route to glycosyl piperidines. Tetrahedron Letters, 2009, 50, 7152-7155.	1.4	16
142	Mechanism Switch in Mannichâ€Type Reactions: ELF and NCI Topological Analyses of the Reaction between Nitrones and Lithium Enolates. European Journal of Organic Chemistry, 2015, 2015, 4143-4152.	2.4	16
143	Nitrone Ylides: Two Possible 1,3â€Dipolar Cycloadditions but Only One Stepwise Formation of allâ€ <i>cis</i> â€5â€Arylâ€2,3,5â€trisubstituted <i>N</i> â€Hydroxypyrrolidines. European Journal of Organic Chemistry, 2011, 2011, 6567-6573.	2.4	15
144	Theoretical Elucidation of the Mechanism of the Cycloaddition between Nitrone Ylides and Electron-Deficient Alkenes. Journal of Organic Chemistry, 2014, 79, 2189-2202.	3.2	15

#	Article	IF	CITATIONS
145	A Case Study of Thioureaâ€Assisted Iminium Formation by Hydroxyl Anion Binding: Kinetic, Spectroscopic and Computational Evidences. Advanced Synthesis and Catalysis, 2017, 359, 4122-4128.	4.3	15
146	(+)-Methyl (1 <i>R</i> ,2 <i>S</i>)-2-{[4-(4-Chlorophenyl)-4-hydroxypiperidin-1-yl]methyl}-1-phenylcyclopropanecarboxylate [(+)-MR200] Derivatives as Potent and Selective Sigma Receptor Ligands: Stereochemistry and Pharmacological Properties. Journal of Medicinal Chemistry, 2018, 61, 372-384.	6.4	15
147	Sequential Metal-Free Thermal 1,3-Dipolar Cycloaddition of Unactivated Azomethine Ylides. Organic Letters, 2018, 20, 3522-3526.	4.6	15
148	Enantioselective Synthesis of Tropanes: Brønsted Acid Catalyzed Pseudotransannular Desymmetrization. Angewandte Chemie - International Edition, 2020, 59, 6780-6784.	13.8	15
149	Highly diastereoselective 1,3-dipolar cycloadditions of chiral non-racemic nitrones to 1,2-diaza-1,3-dienes: an experimental and computational investigation. Organic and Biomolecular Chemistry, 2014, 12, 8888-8901.	2.8	14
150	Computational evidence of glycosyl cations. Organic and Biomolecular Chemistry, 2021, 19, 2350-2365.	2.8	14
151	Chemistry and Biology of Iminosugar Di- and Oligosaccharides. Current Chemical Biology, 2009, 3, 253-271.	0.5	14
152	Diheterocyclic compounds from dithiocarbamates and derivatives thereof. II . 2,2′â€Diaminoâ€6,6′â€bibenzoazoles. Journal of Heterocyclic Chemistry, 1990, 27, 321-326.	2.6	13
153	A straightforward synthesis of L-isoserinal. Tetrahedron, 1996, 52, 7045-7052.	1.9	13
154	3-(Aminomethyl)-2-(carboxymethyl)isoxazolidinyl nucleosides: building blocks for peptide nucleic acid analogues. Tetrahedron: Asymmetry, 2007, 18, 1517-1520.	1.8	13
155	Experimental and theoretical studies on Mannich-type reactions of chiral non-racemic N-(benzyloxyethyl) nitrones. Tetrahedron: Asymmetry, 2010, 21, 2934-2943.	1.8	13
156	On linear-quadratic elliptic control problems of semi-infinite type. Applicable Analysis, 2011, 90, 1047-1074.	1.3	13
157	Revealing carbocations in highly asynchronous concerted reactions: The ene-type reaction between dithiocarboxylic acids and alkenes. Tetrahedron, 2018, 74, 5627-5634.	1.9	13
158	Recent Progress on Fucosyltransferase Inhibitors. Mini-Reviews in Medicinal Chemistry, 2012, 12, 1455-1464.	2.4	12
159	Diheterocyclic compounds from dithiocarbamates and derivatives thereof. VI. unsymmetrical <i>N</i> ¹ , <i>N</i> ⁴ â€Bis(2â€benzazolyl)sulphanilamides. Journal of Heterocyclic Chemistry, 1991, 28, 653-656.	2.6	11
160	Crystal and Molecular Structures of N-benzyl-C-(2-pyridyl) nitrone and its ZnBr2 Complex. A Study of Their Reactivity. Molecules, 2001, 6, 208-220.	3.8	11
161	Stereoselective 1,3-dipolar cycloadditions of nitrones derived from amino acids. Asymmetric synthesis of N-(alkoxycarbonylmethyl)-3-hydroxypyrrolidin-2-ones. Tetrahedron, 2013, 69, 9381-9390.	1.9	11
162	[2n2Ï€ + 2n2Ï€] Cycloadditions: an alternative to forbidden [4Ï€ + 4Ï€] processes. The case of nitrone dimerization. Organic and Biomolecular Chemistry, 2014, 12, 517-525.	2.8	11

#	Article	IF	CITATIONS
163	Enantio―and Diastereoselective Nucleophilic Addition of N ―tert â€Butylhydrazones to Isoquinolinium Ions through Anionâ€Binding Catalysis. Angewandte Chemie, 2021, 133, 5156-5161.	2.0	11
164	Piperidine Azasugars Bearing Lipophilic Chains: Stereoselective Synthesis and Biological Activity as Inhibitors of Glucocerebrosidase (GCase). Journal of Organic Chemistry, 2021, 86, 12745-12761.	3.2	11
165	Asymmetric synthesis of dibenzo $[\langle i \rangle b \langle i \rangle, \langle i \rangle d \langle i \rangle]$ azepines by Cu-catalyzed reductive or borylative cyclization. Chemical Science, 2021, 12, 15291-15297.	7.4	11
166	Absence of Intermediates in the BINOL-Derived Mg(II)/Phosphate-Catalyzed Desymmetrizative Ring Expansion of 1-Vinylcyclobutanols. Journal of Organic Chemistry, 2022, 87, 693-707.	3.2	11
167	Diheterocyclic compounds from dithiocarbamates and derivatives thereof. III. 3,3′â€arylenebis(2,4â€dioxoâ€1,2,3,4â€tetrahydroquinazolines). Journal of Heterocyclic Chemistry, 1990, 27, 1341-1344.	2.6	10
168	Chapter 2 Recent advances in the reaction of metalated aromatic heterocycles with carbonyl compounds and their imino derivatives. Progress in Heterocyclic Chemistry, 1999, 11, 21-44.	0.5	10
169	Nucleophilic Additions to Chiral Nitrones: New Approaches to Nitrogenated Compounds. Synlett, 2000, 2000, 442-454.	1.8	10
170	Diastereo- and Enantioselective Synthesis of 1′-C-BranchedN,O-Nucleosides. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 739-742.	1.1	10
171	Stereoselective Ethynylation and Propargylation of Chiral Cyclic Nitrones: Application to the Synthesis of Glycomimetics. Synthesis, 2016, 48, 3339-3351.	2.3	10
172	Organocatalytic Enantioselective Synthesis of Trifluoromethylâ€Containing Tetralin Derivatives by Sequential (Hetero)Michael Reaction–Intramolecular Nitrone Cycloaddition. Advanced Synthesis and Catalysis, 2017, 359, 3752-3764.	4.3	10
173	Self-Regeneration of Chirality with <scp>l</scp> -Cysteine through 1,3-Dipolar Cycloadditions between Diazoalkanes and Enantiomerically Pure Thiazolines: Experimental and Computational Studies. Journal of Organic Chemistry, 2018, 83, 3960-3972.	3.2	10
174	Synergistic Catalysis: Highly Enantioselective Cascade Reaction for the Synthesis of Dihydroacridines. Chemistry - A European Journal, 2019, 25, 7623-7627.	3.3	10
175	Diheterocyclic compounds from dithiocarbamates and derivatives thereof. I . 2,2′â€(arylenediamino)bisbenzoazoles, 2,2′â€(arylenediamino)bis(imidazopyridines) and 8,8′â€(arylenediamino)bispurines. Journal of Heterocyclic Chemistry, 1990, 27, 221-226.	2.6	9
176	Determination of the absolute configuration of \hat{l}_{\pm} -amino-2-alkylthiazoles by circular dichroism. Tetrahedron: Asymmetry, 1995, 6, 2145-2148.	1.8	9
177	The High Selectivity of the Cp2ZrHCl Reducing Agent for Imides: A Combined Experimental and Theoretical Study on Î ³ -Lactam and Isoxazolidinone Derivatives. European Journal of Organic Chemistry, 2013, 2013, 95-104.	2.4	9
178	Stereochemistry of \hat{l}_{\pm} -(tert-butoxycarbonylamino) hydroxylamines: 1H NMR analysis of hydroxylamines derived from 2-pyrrolidinyl nitrones. Tetrahedron: Asymmetry, 1999, 10, 1861-1865.	1.8	8
179	Organocatalytic Activation of Imines and Related Compounds Through Hydrogen-Bond Interactions. Current Organic Chemistry, 2011, 15, 2184-2209.	1.6	8
180	Highly stereoselective synthesis of imino-C-di- and trisaccharides as hydrolytically stable glycomimetics. Tetrahedron, 2012, 68, 6674-6687.	1.9	8

#	Article	IF	Citations
181	Dual reactivity of O-α-allenyl esters under palladium(0) catalysis: From carbopalladation/allylic alkylation domino sequence to decarboxylative allenylation. Journal of Organometallic Chemistry, 2012, 714, 53-59.	1.8	8
182	UDPâ€GlcNAc Analogues as Inhibitors of <i>O</i> àê€GlcNAc Transferase (OGT): Spectroscopic, Computational, and Biological Studies. Chemistry - A European Journal, 2018, 24, 7264-7272.	3.3	8
183	Recent Advances on the Enantioselective Synthesis of C-Nucleosides Inhibitors of Inosine Monophosphate Dehydrogenase (IMPDH). Current Topics in Medicinal Chemistry, 2014, 14, 1212-1224.	2.1	8
184	Acyl Group Migration in Pyranosides as Studied by Experimental and Computational Methods. Chemistry - A European Journal, 2022, 28, .	3.3	8
185	Diheterocyclic compounds from dithiocarbamates and derivatives thereof.IV. 3,3′-arylenebis-(4-oxo-2-thioxo-1,2,3,4-tetrahydroquinazolines). Journal of Heterocyclic Chemistry, 1990, 27, 1345-1349.	2.6	7
186	Stereoselective Synthesis of (â^')-Deacetylanisomycin. European Journal of Organic Chemistry, 2003, 2003, 2877-2881.	2.4	7
187	Inhibitors against Fungal Cell Wall Remodeling Enzymes. ChemMedChem, 2018, 13, 128-132.	3.2	7
188	Facial selectivity in the addition of ketene acetals to nitrones towards chiral non-racemic isoxazolidin-5-ones. A semiempirical study. Arkivoc, 2002, 2001, 12-30.	0.5	7
189	Absolute configuration determination in furfuryl amines and hydroxylamines by circular dichroism. Tetrahedron: Asymmetry, 1996, 7, 1529-1534.	1.8	6
190	A Facile New Method for the Preparation of Aromatic Diisothiocyanates. Bulletin Des Sociétés Chimiques Belges, 1989, 98, 289-290.	0.0	6
191	Asymmetric diastereodivergent Michael addition of 2-chloromalonate esters to conjugated imines enabled by catalyst metal change. Organic Chemistry Frontiers, 2019, 6, 2907-2915.	4.5	6
192	Error estimates for the finite element discretization of semi-infinite elliptic optimal control problems. Discussiones Mathematicae: Differential Inclusions, Control and Optimization, 2010, 30, 221.	0.4	6
193	Chiral Hydroxylamines. II. (1R,2R)-N-Benzyl-N-[(3-tert-butoxycarbonyl-2,2-dimethyloxazol-4-yl)(furan-2-yl)methyl]hydroxylamine. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 2536-2538.	0.4	5
194	Nucleophilic Additions of 2-Furyllithium to Carbonyl Derivatives of L-Serine. Formal Synthesis of $(2R,3R)$ - \hat{l}^2 -Hydroxy Aspartic Acid. Molecules, 1998, 3, 26-30.	3.8	5
195	1,3-Dipolar Cycloadditions of N-Benzyl Furfuryl Nitrones with Electron-rich Alkenes. Molecules, 2000, 5, 132-152.	3.8	5
196	Effect of Additional Chiral Ligands in Catalytic Enantioselective Addition of Ketene Silyl Acetals to Nitrones. Letters in Organic Chemistry, 2005, 2, 302-305.	0.5	5
197	On the reaction of aromatic amines with carbon disulfide: A facile modified preparation of bis(dithiocarbamic) acid derivatives. Bulletin Des Sociétés Chimiques Belges, 1988, 97, 791-792.	0.0	5
198	High-yield synthesis of pyrrolidinyl PNA monomers. Tetrahedron Letters, 2011, 52, 6003-6006.	1.4	5

#	Article	IF	Citations
199	Synthesis of O- and C-glycosides derived from \hat{l}^2 -(1,3)-d-glucans. Carbohydrate Research, 2013, 382, 9-18.	2.3	5
200	Nucleoside Diphosphate Sugar Analogues that Target Glycosyltransferases. Asian Journal of Organic Chemistry, 2016, 5, 1413-1427.	2.7	5
201	Asymmetric synthesis of polycyclic 3-fluoroalkylproline derivatives by intramolecular azomethine ylide cycloaddition. Organic Chemistry Frontiers, 2019, 6, 2916-2923.	4.5	5
202	Dissecting the Structural and Chemical Determinants of the "Open-to-Closed―Motion in the Mannosyltransferase PimA from Mycobacteria. Biochemistry, 2020, 59, 2934-2945.	2.5	5
203	Enantioselective Synthesis of Tropanes: Brønsted Acid Catalyzed Pseudotransannular Desymmetrization. Angewandte Chemie, 2020, 132, 6846-6850.	2.0	5
204	Recent Advances in the Preparation of Enantiomerically Pure Hydroxylamines from Nitrones. Current Organic Synthesis, 2016, 13, 669-686.	1.3	5
205	An adaptive numerical method for semi-infinite elliptic control problems based on error estimates. Optimization Methods and Software, 2015, 30, 492-515.	2.4	4
206	Second-order orthant-based methods with enriched Hessian information for sparse \$\$ell _1\$\$ â,, 1 -optimization. Computational Optimization and Applications, 2017, 67, 225-258.	1.6	4
207	BET & amp; ELF Quantum Topological Analysis of Neutral 2-Aza-Cope Rearrangement of \hat{I}^3 -Alkenyl Nitrones. Molecules, 2017, 22, 1371.	3.8	4
208	Synthesis of Enantiopure Constrained α,β-Cycloaliphatic Cystines via Diels–Alder Reaction with Homochiral Thiazolines. Journal of Organic Chemistry, 2018, 83, 12471-12485.	3.2	4
209	Concerted Albeit Not Pericyclic Cycloadditions: Understanding the Mechanism of the (4+3) Cycloaddition between Nitrones and 1,2â€Diazaâ€1,3â€dienes. European Journal of Organic Chemistry, 2019, 2019, 391-400.	2.4	4
210	Transient and intermediate carbocations in ruthenium tetroxide oxidation of saturated rings. Beilstein Journal of Organic Chemistry, 2019, 15, 1552-1562.	2.2	4
211	Rearrangement Reactions in Azaâ€Vinylogous Povarov Products: Metalâ€Free Synthesis of C ³ â€Functionalized Quinolines and Studies on their Synthetic Application. European Journal of Organic Chemistry, 2019, 2019, 6452-6464.	2.4	4
212	Experimental and Computational Studies on the 1,3â€Dipolar Cycloaddition between Enantiomerically Pure 2,3â€Dihydrothiazoles and Nitrones. European Journal of Organic Chemistry, 2019, 2019, 4426-4435.	2.4	4
213	\hat{l}_{\pm} -Keto hydrazones in asymmetric aminocatalysis: reactivity through \hat{l}^2 -amino aza-dienamine intermediates. Organic Chemistry Frontiers, 2021, 8, 3446-3456.	4.5	4
214	Structures of Chiral Nitrones. II. (Z)-N-[(2S)-2-(tert-Butoxycarbonylamino)propylidene]benzylamine N-Oxide. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 218-219.	0.4	3
215	Synthesis of N-(Benzyloxyethyl)- and N-(Alkoxycarbonylmethyl)nitrones. Synthesis, 2010, 2010, 678-688.	2.3	3
216	1â€Aminovinylphosphonate Esters as Substrates for the Dielsâ€Alder Reaction: First Synthetic and Theoretical Study. European Journal of Organic Chemistry, 2019, 2019, 1268-1272.	2.4	3

#	Article	IF	CITATIONS
217	Synthesis of pterocarpans through palladium-catalyzed oxyarylation of alkoxy-2H-chromenes with o-iodophenols. Tetrahedron, 2020, 76, 131638.	1.9	3
218	Design and Synthesis of Dopaminergic Agonists. Current Medicinal Chemistry, 2016, 23, 2790-2825.	2.4	3
219	Diheterocyclic compounds from dithiocarbamates and derivatives thereof. $<$ b> \lor V. $4,4$ â \in 2â \in dioxoâ \in 2 $,2$ â \in 2â \in dithioxo(dioxo)â \in 6 $,6$ â \in 2â \in biquinazolines. Journal of Heterocyclic Chemistry, 1990, 27,	1 ² 3 ⁸ 1-135	4.
220	(Z)-N-[(2R,3R)-2-(tert-Butoxycarbonylamino)-3-(tert-butyldiphenylsiloxy)butylidene]benzylamine N-Oxide. Acta Crystallographica Section C: Crystal Structure Communications, 1995, 51, 1949-1950.	0.4	2
221	Biosynthetic Pathways to Glycosidase Inhibitors. Current Chemical Biology, 2014, 8, 10-16.	0.5	2
222	Rational Design of Glycomimetic Compounds Targeting the Saccharomyces cerevisiae Transglycosylase Gas 2. Chemical Biology and Drug Design, 2016, 87, 163-170.	3.2	2
223	Synthesis of Aminoâ€Acid–Nucleoside Conjugates. Asian Journal of Organic Chemistry, 2016, 5, 1525-1534.	2.7	2
224	A difference-of-convex functions approach for sparse PDE optimal control problems with nonconvex costs. Computational Optimization and Applications, 2019, 74, 225-258.	1.6	2
225	The Pseudotransannular Ring Opening of 1â€Aminocycloheptâ€4â€eneâ€derived Epoxides in the Synthesis of Tropane Alkaloids: Total Synthesis of (±)â€Ferrugine. European Journal of Organic Chemistry, 2021, 2021, 2855-2861.	2.4	2
226	1.18 CN Addition to CO and CN Bonds. , 2014, , 697-750.		1
227	Finite element error estimates for an optimal control problem governed by the Burgers equation. Computational Optimization and Applications, 2016, 63, 793-824.	1.6	1
228	Exploratory spectroscopic and computational studies of the anion binding properties of methyl hyocholate in organic solvent. Tetrahedron, 2017, 73, 1698-1704.	1.9	1
229	Native Quercetin as a Chloride Receptor in an Organic Solvent. Molecules, 2018, 23, 3366.	3.8	1
230	Chiral Hydroxylamines. III. 1-(N-Benzyl-N-hydroxyamino)-1-deoxy-1-(2-furyl)-2,3:4,5-di-O-isopropylidene-L-manno-pentitol. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 3197-3198.	0.4	0
231	Chiral Hydroxylamines. IV. 1-(N-Benzyl-N-hydroxyamino)-2:3;4:5-di-O-isopropylidene-α-D-mannofuranose. Acta Crystallographica Section C: Crystal Structure Communications, 1997, 53, 1703-1705.	0.4	O
232	(1S,2S)-N-Benzyl-N-[(2,2-dimethyl-1,3-dioxolan-4-yl)-(2-benzothienyl)methyl] Hydroxylamine. Molecules, 1998, 3, M82.	3.8	0
233	A Comparative Study of the Stereoselective Addition of Trimethylsilyl Cyanide and Diethylaluminum Cyanide to Chiral Cyclic Nitrones ChemInform, 2003, 34, no.	0.0	O
234	Iterative Organometallic Addition to Chiral Hydroxylated Cyclic Nitrones: Highly Stereoselective Syntheses of α,α′- and α,α-Substituted Hydroxypyrrolidines ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	CITATIONS
235	Organocatalyzed Asymmetric α-Aminoxylation of Aldehydes and Ketones — An Efficient Access to Enantiomerically Pure α-Hydroxycarbonyl Compounds, Diols, and Even Amino Alcohols. ChemInform, 2004, 35, no.	0.0	0
236	Organocatalyzed Michael Addition Reaction by Novel (2R,3aS,7aS)-Octa-hydroindole-2-carboxylic Acid, a New Fused Proline. Synlett, 2011, 2011, 249-253.	1.8	0
237	Azomethine Ylides from Nitrones: Using Catalytic n BuLi for the Totally Stereoselective Synthesis of trans -2-Alkyl-3-oxazolines. Chemistry - A European Journal, 2016, 22, 11477-11477.	3.3	0
238	Error estimates for the FEM approximation of optimal sparse control of elliptic equations with pointwise state constraints and finiteâ€dimensional control space. Optimal Control Applications and Methods, 2020, 41, 1451-1476.	2.1	0
239	Nonsmooth exact penalization second-order methods for incompressible bi-viscous fluids. Computational Optimization and Applications, 2021, 80, 979.	1.6	0
240	A Tribute to Prof. Enrique Melendez. Arkivoc, 2004, 2004, 1-4.	0.5	0
241	Nucleophilic additions of chiral non-racemic enolates to N-benzyl-C-(alkoxymethyl) nitrones. Arkivoc, 2004, 2004, 48-58.	0.5	0
242	Direct Hydroxymethylation of C=N Double Bonds. Letters in Organic Chemistry, 2018, 15, 375-386.	0.5	0
243	Synthetic Approaches to Inhibitors of Isoprenoid Biosynthesis. , 2019, , 31-76.		0