Roy van der Meel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3449137/publications.pdf

Version: 2024-02-01

46 papers 6,670 citations

30 h-index 214800 47 g-index

48 all docs

48 docs citations

48 times ranked

8650 citing authors

#	Article	IF	CITATIONS
1	The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nature Nanotechnology, 2019, 14, 1084-1087.	31.5	814
2	Smart cancer nanomedicine. Nature Nanotechnology, 2019, 14, 1007-1017.	31.5	776
3	The current landscape of nucleic acid therapeutics. Nature Nanotechnology, 2021, 16, 630-643.	31.5	578
4	The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics, 2020, 10, 7921-7924.	10.0	459
5	PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. Journal of Controlled Release, 2016, 224, 77-85.	9.9	402
6	Extracellular vesicles as drug delivery systems: Lessons from the liposome field. Journal of Controlled Release, 2014, 195, 72-85.	9.9	372
7	Ligand-targeted particulate nanomedicines undergoing clinical evaluation: Current status. Advanced Drug Delivery Reviews, 2013, 65, 1284-1298.	13.7	338
8	Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility. Nucleic Acid Therapeutics, 2018, 28, 146-157.	3.6	335
9	On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA. ACS Nano, 2018, 12, 4787-4795.	14.6	319
10	Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics. Accounts of Chemical Research, 2019, 52, 2435-2444.	15.6	270
11	Lipid nanoparticle technology for therapeutic gene regulation in the liver. Advanced Drug Delivery Reviews, 2020, 159, 344-363.	13.7	187
12	Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel ⟨i⟩via⟨ i⟩ ΖΠStacking Stabilized Polymeric Micelles. ACS Nano, 2015, 9, 3740-3752.	14.6	185
13	Stateâ€ofâ€theâ€Art Design and Rapidâ€Mixing Production Techniques of Lipid Nanoparticles for Nucleic Acid Delivery. Small Methods, 2018, 2, 1700375.	8.6	165
14	Dexamethasone nanomedicines for COVID-19. Nature Nanotechnology, 2020, 15, 622-624.	31.5	138
15	Downregulation of EGFR by a novel multivalent nanobody-liposome platform. Journal of Controlled Release, 2010, 145, 165-175.	9.9	117
16	Cancer nanomedicines: oversold or underappreciated?. Expert Opinion on Drug Delivery, 2017, 14, 1-5.	5.0	107
17	Nanobody â€" Shell functionalized thermosensitive core-crosslinked polymeric micelles for active drug targeting. Journal of Controlled Release, 2011, 151, 183-192.	9.9	94
18	Nanobody-albumin nanoparticles (NANAPs) for the delivery of a multikinase inhibitor 17864 to EGFR overexpressing tumor cells. Journal of Controlled Release, 2013, 165, 110-118.	9.9	88

#	Article	IF	CITATIONS
19	Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads. Nanoscale, 2019, 11, 9023-9031.	5.6	85
20	Tumor-targeted Nanobullets: Anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor for cancer treatment. Journal of Controlled Release, 2012, 159, 281-289.	9.9	83
21	The VEGF/Rho GTPase signalling pathway: A promising target for anti-angiogenic/anti-invasion therapy. Drug Discovery Today, 2011, 16, 219-228.	6.4	65
22	Toward routine detection of extracellular vesicles in clinical samples. International Journal of Laboratory Hematology, 2014, 36, 244-253.	1.3	56
23	Characterization of Lipid Nanoparticles Containing Ionizable Cationic Lipids Using Design-of-Experiments Approach. Langmuir, 2021, 37, 1120-1128.	3.5	50
24	Recent advances in molecular imaging biomarkers in cancer: application of bench to bedside technologies. Drug Discovery Today, 2010, 15, 102-114.	6.4	45
25	Prosaposin mediates inflammation in atherosclerosis. Science Translational Medicine, 2021, 13, .	12.4	42
26	Nuclear imaging approaches facilitating nanomedicine translation. Advanced Drug Delivery Reviews, 2020, 154-155, 123-141.	13.7	41
27	An in situ gelling liquid crystalline system based on monoglycerides and polyethylenimine for local delivery of siRNAs. European Journal of Pharmaceutical Sciences, 2015, 74, 103-117.	4.0	40
28	The Niemann-Pick C1 Inhibitor NP3.47 Enhances Gene Silencing Potency of Lipid Nanoparticles Containing siRNA. Molecular Therapy, 2016, 24, 2100-2108.	8.2	38
29	Examining the role of Rac1 in tumor angiogenesis and growth: a clinically relevant RNAi-mediated approach. Angiogenesis, 2011, 14, 457-466.	7.2	37
30	Targeted delivery of small interfering RNA to angiogenic endothelial cells with liposome-polycation-DNA particles. Journal of Controlled Release, 2012, 160, 211-216.	9.9	33
31	Cancer nanomedicine meets immunotherapy: opportunities and challenges. Acta Pharmacologica Sinica, 2020, 41, 954-958.	6.1	33
32	Reprint of "Nanobody â€" Shell functionalized thermosensitive core-crosslinked polymeric micelles for active drug targeting". Journal of Controlled Release, 2011, 153, 93-102.	9.9	29
33	Modular Lipid Nanoparticle Platform Technology for siRNA and Lipophilic Prodrug Delivery. Small, 2021, 17, e2103025.	10.0	29
34	Inhibition of Tumor Growth by Targeted Anti-EGFR/IGF-1R Nanobullets Depends on Efficient Blocking of Cell Survival Pathways. Molecular Pharmaceutics, 2013, 10, 3717-3727.	4.6	26
35	Cetuximab treatment alters the content of extracellular vesicles released from tumor cells. Nanomedicine, 2016, 11, 881-890.	3.3	20
36	A modular approach toward producing nanotherapeutics targeting the innate immune system. Science Advances, 2021, 7, .	10.3	20

#	Article	IF	CITATIONS
37	<i>In Situ</i> Gelling Liquid Crystalline System as Local siRNA Delivery System. Molecular Pharmaceutics, 2017, 14, 1681-1690.	4.6	18
38	Capillary electrophoresis-based assessment of nanobody affinity and purity. Analytica Chimica Acta, 2014, 818, 1-6.	5.4	17
39	Roadmap on nanomedicine. Nanotechnology, 2021, 32, 012001.	2.6	17
40	Sustained depletion of FXIII-A by inducing acquired FXIII-B deficiency. Blood, 2020, 136, 2946-2954.	1.4	17
41	Nanotechnology for organ-tunable gene editing. Nature Nanotechnology, 2020, 15, 253-255.	31.5	16
42	Ligand-targeted Particulate Nanomedicines Undergoing Clinical Evaluation: Current Status. Fundamental Biomedical Technologies, 2016, , 163-200.	0.2	16
43	Controlling Cardiomyocyte Survival. Novartis Foundation Symposium, 2008, , 41-57.	1.1	12
44	Translating nanomedicines: Thinking beyond materials? A young investigator's reply to †The Novelty Bubble'. Journal of Controlled Release, 2018, 290, 138-140.	9.9	12
45	Lipid nanoparticles to silence androgen receptor variants for prostate cancer therapy. Journal of Controlled Release, 2022, 349, 174-183.	9.9	10
46	Nanoengineering Apolipoprotein A1â€Based Immunotherapeutics. Advanced Therapeutics, 2021, 4, 2100083.	3.2	8