Alin-Mihai CÄ**j**lean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3449085/publications.pdf

Version: 2024-02-01

1040056 1372567 27 729 9 10 citations g-index h-index papers 27 27 27 522 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Improved Single-LED Pulse Oximeter Design Based on Multi-Wavelength Analysis. , 2022, , .		1
2	Evaluation of Misalignment Effect in Vehicle-to-Vehicle Visible Light Communications: Experimental Demonstration of a 75 Meters Link. Sensors, 2021, 21, 3577.	3.8	25
3	Analysis and Experimental Investigation of the Light Dimming Effect on Automotive Visible Light Communications Performances. Sensors, 2021, 21, 4446.	3.8	16
4	Experimental Investigation of Visible Light Communications Coverage in Vehicle-to-Vehicle Applications. , $2021, \ldots$		0
5	Experimental Demonstration of a 188 meters Infrastructure-to-Vehicle Visible Light Communications Link in Outdoor Conditions. , $2021, , .$		6
6	Experimental Demonstration of a 185 meters Vehicular Visible Light Communications Link., 2021,,.		10
7	Analysis Concerning the Usage of Visible Light Communications in Automotive Applications: Achievable Distances vs. Optical Noise. , 2020, , .		5
8	Design and Intensive Experimental Evaluation of an Enhanced Visible Light Communication System for Automotive Applications. Sensors, 2020, 20, 3190.	3.8	14
9	Photodiode Amplifier with Transimpedance and Differential Stages for Automotive Visible Light Applications. , 2020, , .		2
10	Noise-Adaptive Visible Light Communications Receiver for Automotive Applications: A Step Toward Self-Awareness. Sensors, 2020, 20, 3764.	3.8	19
11	Experimental Evaluation of Traffic Light to Vehicle Visible Light Communications in Snowfall Conditions. , 2020, , .		5
12	Noise Resilient Outdoor Traffic Light Visible Light Communications System Based on Logarithmic Transimpedance Circuit: Experimental Demonstration of a 50 m Reliable Link in Direct Sun Exposure. Sensors, 2020, 20, 909.	3.8	22
13	Complementary Radiofrequency and Visible Light Systems for Indoor and Vehicular Communications. , 2019, , .		5
14	Intensive Testing of Infrastructure-to-Vehicle Visible Light Communications in Real Outdoor Scenario: Evaluation of a 50 meters link in Direct Sun Exposure. , $2019, , .$		15
15	Indoor Visible Light Communications demonstration: University Campus Radio Station transmitted through the lighting system. , 2019, , .		O
16	Toward a hybrid vehicle communication platform based on VLC and DSRC technologies. , 2019, , .		3
17	Enhanced design of visible light communication sensor for automotive applications: Experimental demonstration of a 130 meters link. , 2018, , .		20
18	Visible light communication sensors with adaptive hysteretic circuits for automotive applications. Physica B: Condensed Matter, 2018, 549, 31-34.	2.7	3

Alin-Mihai CÄfilean

#	Article	IF	CITATION
19	Green power supply for an intelligent traffic light enhanced with visible light communications capabilities. , $2018, , .$		1
20	Impact of IEEE 802.15.7 Standard on Visible Light Communications Usage in Automotive Applications. , 2017, 55, 169-175.		87
21	Current Challenges for Visible Light Communications Usage in Vehicle Applications: A Survey. IEEE Communications Surveys and Tutorials, 2017, 19, 2681-2703.	39.4	265
22	Digital Signal Processing Sensor for Automotive Visible Light Communications Applications. , 2017, , .		2
23	Toward Environmental-Adaptive Visible Light Communications Receivers for Automotive Applications: A Review. IEEE Sensors Journal, 2016, 16, 2803-2811.	4.7	51
24	Novel DSP Receiver Architecture for Multi-Channel Visible Light Communications in Automotive Applications. IEEE Sensors Journal, 2016, 16, 3597-3602.	4.7	20
25	Novel Receiver Sensor for Visible Light Communications in Automotive Applications. IEEE Sensors Journal, 2015, 15, 4632-4639.	4.7	56
26	Miller code usage in Visible Light Communications under the PHY I layer of the IEEE 802.15.7 standard. , 2014, , .		12
27	A survey on the usage of DSRC and VLC in communication-based vehicle safety applications. , 2014, , .		64