
Stephanie Schwalm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3448164/publications.pdf Version: 2024-02-01

STEDHANIE SCHWALM

#	Article	IF	CITATIONS
1	Sphingosine 1-Phosphate Receptor 5 (S1P5) Knockout Ameliorates Adenine-Induced Nephropathy. International Journal of Molecular Sciences, 2022, 23, 3952.	4.1	3
2	Sphk1 and Sphk2 Differentially Regulate Erythropoietin Synthesis in Mouse Renal Interstitial Fibroblast-like Cells. International Journal of Molecular Sciences, 2022, 23, 5882.	4.1	3
3	Consistent alteration of chain length-specific ceramides in human and mouse fibrotic kidneys. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158821.	2.4	6
4	Validation of highly selective sphingosine kinase 2 inhibitors SLM6031434 and HWC-35D as effective anti-fibrotic treatment options in a mouse model of tubulointerstitial fibrosis. Cellular Signalling, 2021, 79, 109881.	3.6	7
5	Novel compounds with dual S1P receptor agonist and histamine H3 receptor antagonist activities act protective in a mouse model of multiple sclerosis. Neuropharmacology, 2021, 186, 108464.	4.1	13
6	Loss of sphingosine kinase 2 enhances Wilm's tumor suppressor gene 1 and nephrin expression in podocytes and protects from streptozotocin-induced podocytopathy and albuminuria in mice. Matrix Biology, 2021, 98, 32-48.	3.6	12
7	Design, Synthesis, and Structure–Activity Relationship Studies of Dual Inhibitors of Soluble Epoxide Hydrolase and 5-Lipoxygenase. Journal of Medicinal Chemistry, 2020, 63, 11498-11521.	6.4	13
8	Ceramide Kinase Is Upregulated in Metastatic Breast Cancer Cells and Contributes to Migration and Invasion by Activation of PI 3-Kinase and Akt. International Journal of Molecular Sciences, 2020, 21, 1396.	4.1	23
9	Sorafenib Treatment and Modulation of the Sphingolipid Pathway Affect Proliferation and Viability of Hepatocellular Carcinoma In Vitro. International Journal of Molecular Sciences, 2020, 21, 2409.	4.1	7
10	Downregulation of S1P Lyase Improves Barrier Function in Human Cerebral Microvascular Endothelial Cells Following an Inflammatory Challenge. International Journal of Molecular Sciences, 2020, 21, 1240.	4.1	14
11	Renal Mesangial Cells Isolated from Sphingosine Kinase 2 Transgenic Mice Show Reduced Proliferation and are More Sensitive to Stress-Induced Apoptosis. Cellular Physiology and Biochemistry, 2018, 47, 2522-2533.	1.6	2
12	Sphingosine Kinase-2 Deficiency Ameliorates Kidney Fibrosis by Up-Regulating Smad7 in a Mouse Model of Unilateral Ureteral Obstruction. American Journal of Pathology, 2017, 187, 2413-2429.	3.8	35
13	Biglycan- and Sphingosine Kinase-1 Signaling Crosstalk Regulates the Synthesis of Macrophage Chemoattractants. International Journal of Molecular Sciences, 2017, 18, 595.	4.1	31
14	Sphingosine-1-Phosphate Receptor-2 Antagonists: Therapeutic Potential and Potential Risks. Frontiers in Pharmacology, 2016, 7, 167.	3.5	52
15	Sphingosine kinase 2 deficient mice exhibit reduced experimental autoimmune encephalomyelitis: Resistance to FTY720 but not ST-968 treatments. Neuropharmacology, 2016, 105, 341-350.	4.1	20
16	Upregulation of the S1P3 receptor in metastatic breast cancer cells increases migration and invasion by induction of PGE2 and EP2/EP4 activation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1840-1851.	2.4	25
17	Alterations of the Ceramide Metabolism in the Peri-Infarct Cortex Are Independent of the Sphingomyelinase Pathway and Not Influenced by the Acid Sphingomyelinase Inhibitor Fluoxetine. Neural Plasticity, 2015, 2015, 1-10.	2.2	8
18	Transforming growth factor β2 (TGF-β2)-induced connective tissue growth factor (CTGF) expression requires sphingosine 1-phosphate receptor 5 (S1P5) in human mesangial cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 519-526.	2.4	10

STEPHANIE SCHWALM

#	Article	IF	CITATIONS
19	Sphingosine kinase 2 deficiency increases proliferation and migration of renal mouse mesangial cells and fibroblasts. Biological Chemistry, 2015, 396, 813-825.	2.5	17
20	FTY720 and two novel butterfly derivatives exert a general anti-inflammatory potential by reducing immune cell adhesion to endothelial cells through activation of S1P3 and phosphoinositide 3-kinase. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 1283-1292.	3.0	26
21	Variations in serum sphingolipid levels associate with liver fibrosis progression and poor treatment outcome in hepatitis C virus but not hepatitis B virus infection. Hepatology, 2015, 61, 812-822.	7.3	37
22	The ceramide kinase inhibitor <scp>NVP</scp> â€231 inhibits breast and lung cancer cell proliferation by inducing <scp>M</scp> phase arrest and subsequent cell death. British Journal of Pharmacology, 2014, 171, 5829-5844.	5.4	56
23	Ceramide Kinase Contributes to Proliferation but not to Prostaglandin E ₂ Formation in Renal Mesangial Cells and Fibroblasts. Cellular Physiology and Biochemistry, 2014, 34, 119-133.	1.6	28
24	Targeting the Sphingosine Kinase/Sphingosine 1â€Phosphate Pathway to Treat Chronic Inflammatory Kidney Diseases. Basic and Clinical Pharmacology and Toxicology, 2014, 114, 44-49.	2.5	34
25	Novel oxazolo-oxazole derivatives of FTY720 reduce endothelial cell permeability, immune cell chemotaxis and symptoms of experimental autoimmune encephalomyelitis in mice. Neuropharmacology, 2014, 85, 314-327.	4.1	24
26	Serum acid sphingomyelinase is upregulated in chronic hepatitis C infection and non alcoholic fatty liver disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1012-1020.	2.4	50
27	Sphingosine-1-phosphate: A Janus-faced mediator of fibrotic diseases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 239-250.	2.4	74
28	Sphingosine kinase 1 is critically involved in nitric oxideâ€mediated human endothelial cell migration and tube formation. British Journal of Pharmacology, 2010, 160, 1641-1651.	5.4	21
29	Glucocorticoids protect renal mesangial cells from apoptosis by increasing cellular sphingosine-1-phosphate. Kidney International, 2010, 77, 870-879.	5.2	19
30	Sphingosine kinase-1 is a hypoxia-regulated gene that stimulates migration of human endothelial cells. Biochemical and Biophysical Research Communications, 2008, 368, 1020-1025.	2.1	75
31	Sphingosine kinase 1 and 2 regulate the capacity of mesangial cells to resist apoptotic stimuli in an opposing manner. Biological Chemistry, 2008, 389, 1399-1407.	2.5	50