Grzegorz Lupina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3447487/publications.pdf Version: 2024-02-01

		471509	501196
33	1,515	17	28
papers	citations	h-index	g-index
33	33	33	2500
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Residual Metallic Contamination of Transferred Chemical Vapor Deposited Graphene. ACS Nano, 2015, 9, 4776-4785.	14.6	250
2	A Graphene-Based Hot Electron Transistor. Nano Letters, 2013, 13, 1435-1439.	9.1	215
3	Vertical Graphene Base Transistor. IEEE Electron Device Letters, 2012, 33, 691-693.	3.9	141
4	Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect. 2D Materials, 2017, 4, 025075.	4.4	127
5	Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device. 2D Materials, 2017, 4, 015024.	4.4	122
6	Graphene growth on Ge(100)/Si(100) substrates by CVD method. Scientific Reports, 2016, 6, 21773.	3.3	83
7	Graphene field effect transistors with niobium contacts and asymmetric transfer characteristics. Nanotechnology, 2015, 26, 475202.	2.6	78
8	Charge transfer and partial pinning at the contacts as the origin of a double dip in the transfer characteristics of graphene-based field-effect transistors. Nanotechnology, 2011, 22, 275702.	2.6	63
9	Direct graphene growth on insulator. Physica Status Solidi (B): Basic Research, 2011, 248, 2619-2622.	1.5	59
10	Contact resistance and mobility in back-gate graphene transistors. Nano Express, 2020, 1, 010001.	2.4	55
11	Graphene grown on Ge(0 0 1) from atomic source. Carbon, 2014, 75, 104-112.	10.3	54
12	Observation of field emission from GeSn nanoparticles epitaxially grown on silicon nanopillar arrays. Nanotechnology, 2016, 27, 485707.	2.6	51
13	Molecular beam growth of micrometer-size graphene on mica. Carbon, 2013, 52, 40-48.	10.3	36
14	Photodetection in Hybrid Single-Layer Graphene/Fully Coherent Germanium Island Nanostructures Selectively Grown on Silicon Nanotip Patterns. ACS Applied Materials & Interfaces, 2016, 8, 2017-2026.	8.0	32
15	A manufacturable process integration approach for graphene devices. Solid-State Electronics, 2013, 84, 185-190.	1.4	24
16	Selective Epitaxy of InP on Si and Rectification in Graphene/InP/Si Hybrid Structure. ACS Applied Materials & Interfaces, 2016, 8, 26948-26955.	8.0	23
17	Improving the dielectric constant of Al2O3 by cerium substitution for high-k MIM applications. Surface Science, 2010, 604, 276-282.	1.9	20
18	Characterization of group II hafnates and zirconates for metal–insulator–metal capacitors. Physica Status Solidi (B): Basic Research, 2011, 248, 323-326.	1.5	16

GRZEGORZ LUPINA

#	Article	IF	CITATIONS
19	Nucleation and growth of HfO2 layers on graphene by chemical vapor deposition. Applied Physics Letters, 2013, 103, .	3.3	16
20	Deposition of thin silicon layers on transferred large area graphene. Applied Physics Letters, 2013, 103, .	3.3	13
21	Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene. Scientific Reports, 2016, 6, 29223.	3.3	12
22	Perovskite BaHfO ₃ Dielectric Layers for Dynamic Random Access Memory Storage Capacitor Applications. Advanced Engineering Materials, 2009, 11, 259-264.	3.5	6
23	Deposition of BaHfO ₃ Dielectric Layers for Microelectronic Applications by Pulsed Liquid Injection MOCVD. Chemical Vapor Deposition, 2009, 15, 167-170.	1.3	5
24	Direct growth of HfO2 on graphene by CVD. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	1.2	4
25	Group-II Hafnate, Zirconate, and Tantalate High-k Dielectrics for MIM Applications: The Defect Issue. ECS Transactions, 2009, 25, 219-239.	0.5	3
26	Dielectric Properties of Thin Hf- and Zr-based Alkaline Earth Perovskite Layers. ECS Transactions, 2009, 25, 147-151.	0.5	2
27	Atomic layer deposition of Al2O3on NF3-pre-treated graphene. , 2015, , .		2
28	Contacting graphene in a 200†mm wafer silicon technology environment. Solid-State Electronics, 2018, 144, 17-21.	1.4	2
29	Morphology and Composition of Praseodymium Based High-k Materials and Their Relevance to Dielectric Properties of Thin-Films. ECS Transactions, 2007, 6, 773-805.	0.5	1
30	Charge Traps in High-k Dielectrics: Ab Initio Study of Defects in Pr-Based Materials. , 0, , 247-268.		0
31	Graphene base hot electron transistors with high on/off current ratios. , 2013, , .		Ο
32	Graphene for Silicon Microelectronics: Ab Initio Modeling of Graphene Nucleation and Growth. Nanoscience and Technology, 2016, , 181-203.	1.5	0
33	(Invited) Large Scale Graphene Integration for Silicon Technologies. ECS Transactions, 2017, 79, 3-10.	0.5	0