
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3446738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Magnitude of Global Marine Species Diversity. Current Biology, 2012, 22, 2189-2202.	3.9	797
2	How important is intraspecific genetic admixture to the success of colonising populations?. Trends in Ecology and Evolution, 2014, 29, 233-242.	8.7	401
3	Corridors for aliens but not for natives: effects of marine urban sprawl at a regional scale. Diversity and Distributions, 2015, 21, 755-768.	4.1	239
4	Marine alien species of South Africa — status and impacts. African Journal of Marine Science, 2005, 27, 297-306.	1.1	234
5	Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water. Scientific Reports, 2019, 9, 11559.	3.3	109

6 Hydrodynamic stress and habitat partitioning between indigenous (Perna perna) and invasive (Mytilus) Tj ETQq0 0 0 rgBT /Overlock 10

	Marine invasion genetics: from spatio-temporal patterns to evolutionary outcomes. Biological		
7	Invasions, 2015, 17, 869-885.	2.4	92
8	Introduced and cryptogenic marine and estuarine species of South Africa. Journal of Natural History, 2011, 45, 2463-2524.	0.5	84
9	Tough Adults, Frail Babies: An Analysis of Stress Sensitivity across Early Life-History Stages of Widely Introduced Marine Invertebrates. PLoS ONE, 2012, 7, e46672.	2.5	84
10	Revealing the scale of marine bioinvasions in developing regions: a South African re-assessment. Biological Invasions, 2011, 13, 1991-2008.	2.4	79
11	Recommendations for developing and applying genetic tools to assess and manage biological invasions in marine ecosystems. Marine Policy, 2017, 85, 54-64.	3.2	74
12	Wave action and competitive interaction between the invasive mussel Mytilus galloprovincialis and the indigenous Perna perna in South Africa. Marine Biology, 2006, 150, 69-78.	1.5	73
13	Phylogeography of the widespread marine invader <i>Microcosmus squamiger</i> (Ascidiacea) reveals high genetic diversity of introduced populations and nonâ€independent colonizations. Diversity and Distributions, 2008, 14, 818-828.	4.1	68
14	Applications of next-generation sequencing to the study of biological invasions. Environmental Epigenetics, 2015, 61, 488-504.	1.8	66
15	Cryptic speciation or global spread? The case of a cosmopolitan marine invertebrate with limited dispersal capabilities. Scientific Reports, 2013, 3, 3197.	3.3	59
16	Range expansions across ecoregions: interactions of climate change, physiology and genetic diversity. Global Ecology and Biogeography, 2014, 23, 76-88.	5.8	59
17	Optimising the detection of marine taxonomic richness using environmental DNA metabarcoding: the effects of filter material, pore size and extraction method. Metabarcoding and Metagenomics, 0, 2, .	0.0	55
18	Tracking Invasion Histories in the Sea: Facing Complex Scenarios Using Multilocus Data. PLoS ONE, 2012, 7, e35815.	2.5	48

#	Article	IF	CITATIONS
19	Facilitation and competition between invasive and indigenous mussels over a gradient of physical stress. Basic and Applied Ecology, 2009, 10, 607-613.	2.7	47
20	Spread of Microcosmus squamiger (Ascidiacea: Pyuridae) in the Mediterranean Sea and adjacent waters. Journal of Experimental Marine Biology and Ecology, 2007, 342, 185-188.	1.5	46
21	Population dynamics and life cycle of the introduced ascidian Microcosmus squamiger in the Mediterranean Sea. Biological Invasions, 2009, 11, 2181-2194.	2.4	44
22	Larval settlement behaviour in six gregarious ascidians in relation to adult distribution. Marine Ecology - Progress Series, 2010, 418, 151-163.	1.9	43
23	Long-term coexistence of non-indigenous species in aquaculture facilities. Marine Pollution Bulletin, 2011, 62, 2395-2403.	5.0	39
24	"Nested" cryptic diversity in a widespread marine ecosystem engineer: a challenge for detecting biological invasions. BMC Evolutionary Biology, 2011, 11, 176.	3.2	39
25	Global metaâ€analysis of native and nonindigenous trophic traits in aquatic ecosystems. Global Change Biology, 2017, 23, 1861-1870.	9.5	37
26	Animals, protists and bacteria share marine biogeographic patterns. Nature Ecology and Evolution, 2021, 5, 738-746.	7.8	36
27	Non-lethal effects of an invasive species in the marine environment: the importance of early life-history stages. Oecologia, 2009, 159, 873-882.	2.0	34
28	Mechanisms of biotic resistance across complex life cycles. Journal of Animal Ecology, 2014, 83, 296-305.	2.8	32
29	Anthropogenic transport of species across native ranges: unpredictable genetic and evolutionary consequences. Biology Letters, 2016, 12, 20160620.	2.3	31
30	How does eDNA decay affect metabarcoding experiments?. Environmental DNA, 2022, 4, 108-116.	5.8	31
31	Genetic signatures of natural selection in a model invasive ascidian. Scientific Reports, 2017, 7, 44080.	3.3	30
32	Mixed but not admixed: a spatial analysis of genetic variation of an invasive ascidian on natural and artificial substrates. Marine Biology, 2013, 160, 1645-1660.	1.5	29
33	Cryptic diversity in coastal Australasia: a morphological and mitonuclear genetic analysis of habitat-forming sibling species. Zoological Journal of the Linnean Society, 2013, 168, 597-611.	2.3	27
34	Human harvesting of <i>Mytilus galloprovincialis</i> Lamarck, 1819, on the central coast of Portugal. Scientia Marina, 2004, 68, 545-551.	0.6	26
35	Propagule size effects across multiple lifeâ€history stages in a marine invertebrate. Functional Ecology, 2010, 24, 685-693.	3.6	24
36	Ascidian introductions through the Suez Canal: The case study of an Indo-Pacific species. Marine Pollution Bulletin, 2012, 64, 2060-2068.	5.0	22

#	ARTICLE	IF	CITATIONS
37	A revision of the Pyura stolonifera species complex (Tunicata, Ascidiacea), with a description of a new species from Australia. Zootaxa, 2011, 2754, .	0.5	20
38	Secondary contacts and genetic admixture shape colonization by an amphiatlantic epibenthic invertebrate. Evolutionary Applications, 2020, 13, 600-612.	3.1	20
39	Introducing the World Register of Introduced Marine Species (WRiMS). Management of Biological Invasions, 2021, 12, 792-811.	1.2	19
40	Are marine protected areas useful for the recovery of the Mediterranean mussel populations?. Aquatic Conservation: Marine and Freshwater Ecosystems, 2008, 18, 527-540.	2.0	15
41	How Anthropogenic Activities Affect the Establishment and Spread of Non-Indigenous Species Post-Arrival. , 2017, , 389-419.		15
42	Lineage splitting, secondary contacts and genetic admixture of a widely distributed marine invertebrate. Journal of Biogeography, 2017, 44, 446-460.	3.0	14
43	Phylogeography and the Description of Geographic Patterns in Invasion Genomics. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	14
44	Nonâ€native species outperform natives in coastal marine ecosystems subjected to warming and freshening events. Global Ecology and Biogeography, 2021, 30, 1698-1712.	5.8	14
45	Environmental DNA sampling protocols for the surveillance of marine non-indigenous species in Irish coastal waters. Marine Pollution Bulletin, 2021, 172, 112893.	5.0	14
46	Genomics-informed models reveal extensive stretches of coastline under threat by an ecologically dominant invasive species. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
47	Ecological Dominance Along Rocky Shores, with a Focus on Intertidal Ascidians. , 2017, , 55-85.		12
48	Marine Invasion Genomics: Revealing Ecological and Evolutionary Consequences of Biological Invasions. Population Genomics, 2018, , 363-398.	0.5	11
49	Contrasting genetic structure of sympatric congeneric gastropods: Do differences in habitat preference, abundance and distribution matter?. Journal of Biogeography, 2019, 46, 369-380.	3.0	11
50	The effect of protection on fish populations in the Ses Negres Marine Reserve (NW Mediterranean,) Tj ETQq0 0 C) rgBT /Ov	erlock 10 Tf 5
51	Isolation and characterization of eight polymorphic microsatellite loci for the Mediterranean gorgonian Paramuricea clavata. Conservation Genetics, 2009, 10, 2025-2027.	1.5	10
52	Early biotic interactions among introduced and native benthic species reveal cryptic predation and shifts in larval behaviour. Marine Ecology - Progress Series, 2013, 488, 65-79.	1.9	10
53	The reconstruction of invasion histories with genomic data in light of differing levels of anthropogenic transport. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210023.	4.0	9

Rapid niche shifts as drivers for the spread of a nonâ€indigenous species under novel environmental 4.1 9 conditions. Diversity and Distributions, 2022, 28, 596-610.

#	Article	IF	CITATIONS
55	Contemporary climate change hinders hybrid performance of ecologically dominant marine invertebrates. Journal of Evolutionary Biology, 2021, 34, 60-72.	1.7	8
56	Long-term environmental tolerance of the non-indigenous Pacific oyster to expected contemporary climate change conditions. Marine Environmental Research, 2021, 164, 105226.	2.5	8
57	Managing human-mediated range shifts: understanding spatial, temporal and genetic variation in marine non-native species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210025.	4.0	8
58	Observations of a novel predatory gull behavior on an invasive ascidian: A new consequence of coastal urban sprawl?. Ecosphere, 2019, 10, e02636.	2.2	5
59	Isolation of polymorphic microsatellite loci for the marine invader <i>Microcosmus squamiger</i> (Ascidiacea). Molecular Ecology Resources, 2008, 8, 1405-1407.	4.8	4
60	Development of genetic tools for the redbait species Pyura herdmani and P. stolonifera, important bioengineers along African coastlines. African Journal of Marine Science, 2021, 43, 251-257.	1.1	0