Atte Moilanen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3445941/publications.pdf

Version: 2024-02-01

139 13,460 61 110
papers citations h-index g-index

141 141 141 11766
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Novel methods for spatial prioritization with applications in conservation, land use planning and ecological impact avoidance. Methods in Ecology and Evolution, 2022, 13, 1062-1072.	5.2	25
2	How threats inform conservation planning—A systematic review protocol. PLoS ONE, 2022, 17, e0269107.	2.5	3
3	Three ways to deliver a net positive impact with biodiversity offsets. Conservation Biology, 2021, 35, 197-205.	4.7	22
4	Developing a spatially explicit modelling and evaluation framework for integrated carbon sequestration and biodiversity conservation: Application in southern Finland. Science of the Total Environment, 2021, 775, 145847.	8.0	18
5	Species composition and turnover models provide robust approximations of biodiversity in marine conservation planning. Ocean and Coastal Management, 2021, 212, 105855.	4.4	3
6	Identification of ecological networks for land-use planning with spatial conservation prioritization. Landscape Ecology, 2020, 35, 353-371.	4.2	71
7	Analyzing fair access to urban green areas using multimodal accessibility measures and spatial prioritization. Applied Geography, 2020, 124, 102320.	3.7	30
8	Quantifying biodiversity trade-offs in the face of widespread renewable and unconventional energy development. Scientific Reports, 2020, 10, 7603.	3.3	28
9	Implementing Green Infrastructure for the Spatial Planning of Peri-Urban Areas in Geneva, Switzerland. Sustainability, 2020, 12, 1387.	3.2	31
10	Importance of complementary approaches for efficient vulture conservation: reply to Efrat et al Conservation Biology, 2020, 34, 1308-1310.	4.7	5
11	A practical method for evaluating spatial biodiversity offset scenarios based on spatial conservation prioritization outputs. Methods in Ecology and Evolution, 2020, 11, 794-803.	5.2	11
12	Spatial prioritization for urban Biodiversity Quality using biotope maps and expert opinion. Urban Forestry and Urban Greening, 2020, 49, 126586.	5.3	22
13	Marine connectivity in spatial conservation planning: analogues from the terrestrial realm. Landscape Ecology, 2020, 35, 1021-1034.	4.2	22
14	Spatial conservation prioritization for the East Asian islands: A balanced representation of multitaxon biogeography in a protected area network. Diversity and Distributions, 2019, 25, 414-429.	4.1	26
15	Using key biodiversity areas to guide effective expansion of the global protected area network. Global Ecology and Conservation, 2019, 20, e00768.	2.1	39
16	Identifying global centers of unsustainable commercial harvesting of species. Science Advances, 2019, 5, eaau2879.	10.3	61
17	Priority areas for conservation of Old World vultures. Conservation Biology, 2019, 33, 1056-1065.	4.7	62
18	Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 909-914.	7.1	312

#	Article	IF	CITATIONS
19	Social Media Data Can Be Used to Understand Tourists' Preferences for Natureâ€Based Experiences in Protected Areas. Conservation Letters, 2018, 11, e12343.	5.7	246
20	Exposing ecological and economic costs of the researchâ€implementation gap and compromises in decision making. Conservation Biology, 2018, 32, 9-17.	4.7	12
21	Spatial characteristics of species distributions as drivers in conservation prioritization. Methods in Ecology and Evolution, 2018, 9, 1121-1132.	5.2	46
22	Evaluation, Gap Analysis, and Potential Expansion of the Finnish Marine Protected Area Network. Frontiers in Marine Science, 2018, 5, .	2.5	44
23	Fifteen operationally important decisions in the planning of biodiversity offsets. Biological Conservation, 2018, 227, 112-120.	4.1	57
24	Not all data are equal: Influence of data type and amount in spatial conservation prioritisation. Methods in Ecology and Evolution, 2018, 9, 2249-2261.	5. 2	52
25	New performance guarantees for the greedy maximization of submodular set functions. Optimization Letters, 2017, 11, 655-665.	1.6	11
26	Species richness as criterion for global conservation area placement leads to large losses in coverage of biodiversity. Diversity and Distributions, 2017, 23, 715-726.	4.1	68
27	Ecosystem services and connectivity in spatial conservation prioritization. Landscape Ecology, 2017, 32, 5-14.	4.2	79
28	Integrating biodiversity, ecosystem services and socio-economic data to identify priority areas and landowners for conservation actions at the national scale. Biological Conservation, 2017, 206, 56-64.	4.1	62
29	Use of demand for and spatial flow of ecosystem services to identify priority areas. Conservation Biology, 2017, 31, 860-871.	4.7	87
30	Examining current or future trade-offs for biodiversity conservation in north-eastern Australia. PLoS ONE, 2017, 12, e0172230.	2.5	10
31	Threats from urban expansion, agricultural transformation and forest loss on global conservation priority areas. PLoS ONE, 2017, 12, e0188397.	2.5	24
32	Global priorities for national carnivore conservation under land use change. Scientific Reports, 2016, 6, 23814.	3.3	169
33	Voluntary non-monetary approaches for implementing conservation. Biological Conservation, 2016, 197, 209-214.	4.1	28
34	Synergies and tradeâ€offs between renewable energy expansion and biodiversity conservation – a crossâ€national multifactor analysis. GCB Bioenergy, 2016, 8, 1191-1200.	5.6	28
35	Matches and mismatches between national and EU-wide priorities: Examining the Natura 2000 network in vertebrate species conservation. Biological Conservation, 2016, 198, 193-201.	4.1	94
36	Synergistic effects of climate and land-use change on representation of African bats in priority conservation areas. Ecological Indicators, 2016, 69, 276-283.	6.3	17

#	Article	IF	Citations
37	Coverage of vertebrate species distributions by Important Bird and Biodiversity Areas and Special Protection Areas in the European Union. Biological Conservation, 2016, 202, 1-9.	4.1	23
38	Optimal conservation resource allocation under variable economic and ecological time discounting rates in boreal forest. Journal of Environmental Management, 2016, 180, 366-374.	7.8	14
39	FORUM: Indirect leakage leads to a failure of avoided loss biodiversity offsetting. Journal of Applied Ecology, 2016, 53, 106-111.	4.0	27
40	Integrating plant―and animalâ€based perspectives for more effective restoration of biodiversity. Frontiers in Ecology and the Environment, 2016, 14, 37-45.	4.0	126
41	Global change synergies and tradeâ€offs between renewable energy and biodiversity. GCB Bioenergy, 2016, 8, 941-951.	5.6	61
42	Green Infrastructure Design Based on Spatial Conservation Prioritization and Modeling of Biodiversity Features and Ecosystem Services. Environmental Management, 2016, 57, 251-256.	2.7	88
43	Green Infrastructure Design Based on Spatial Conservation Prioritization and Modeling of Biodiversity Features and Ecosystem Services. , 2016, 57, 251.		1
44	Conceptual and operational perspectives on ecosystem restoration options in the European Union and elsewhere. Journal of Applied Ecology, 2015, 52, 816-819.	4.0	9
45	Complementarity and Area-Efficiency in the Prioritization of the Global Protected Area Network. PLoS ONE, 2015, 10, e0145231.	2.5	12
46	Identification of policies for a sustainable legal trade in rhinoceros horn based on population projection and socioeconomic models. Conservation Biology, 2015, 29, 545-555.	4.7	73
47	A method for calculating minimum biodiversity offset multipliers accounting for time discounting, additionality and permanence. Methods in Ecology and Evolution, 2014, 5, 1247-1254.	5.2	61
48	Improving the surrogacy effectiveness of charismatic megafauna with wellâ€surveyed taxonomic groups and habitat types. Journal of Applied Ecology, 2014, 51, 281-288.	4.0	59
49	Structured analysis of conservation strategies applied to temporary conservation. Biological Conservation, 2014, 170, 188-197.	4.1	23
50	A method for building corridors in spatial conservation prioritization. Landscape Ecology, 2014, 29, 789-801.	4.2	39
51	Global protected area expansion is compromised by projected land-use and parochialism. Nature, 2014, 516, 383-386.	27.8	312
52	Reconciling biodiversity and carbon conservation. Ecology Letters, 2013, 16, 39-47.	6.4	96
53	Methods and workflow for spatial conservation prioritization using Zonation. Environmental Modelling and Software, 2013, 47, 128-137.	4.5	309
54	Use of Inverse Spatial Conservation Prioritization to Avoid Biological Diversity Loss Outside Protected Areas. Conservation Biology, 2013, 27, 1294-1303.	4.7	47

#	Article	IF	CITATIONS
55	Edge artefacts and lost performance in national versus continental conservation priority areas. Diversity and Distributions, 2013, 19, 171-183.	4.1	44
56	Core concepts of spatial prioritisation in systematic conservation planning. Biological Reviews, 2013, 88, 443-464.	10.4	319
57	Conservation Businesses and Conservation Planning in a Biological Diversity Hotspot. Conservation Biology, 2013, 27, 808-820.	4.7	54
58	Population connectivity: recent advances and new perspectives. Landscape Ecology, 2013, 28, 165-185.	4.2	262
59	Approximating the dispersal of multi-species ecological entities such as communities, ecosystems or habitat types. Ecological Modelling, 2013, 259, 24-29.	2.5	6
60	Identification of top priority areas and management landscapes from a national Natura 2000 network. Environmental Science and Policy, 2013, 27, 11-20.	4.9	41
61	RobOff: software for analysis of alternative landâ€use options and conservation actions. Methods in Ecology and Evolution, 2013, 4, 426-432.	5.2	16
62	Planning impact avoidance and biodiversity offsetting using software for spatial conservation prioritisation. Wildlife Research, 2013, 40, 153.	1.4	28
63	Treatment of uncertainty in conservation under climate change. Conservation Letters, 2013, 6, 73-85.	5.7	78
64	Conservation Planning with Uncertain Climate Change Projections. PLoS ONE, 2013, 8, e53315.	2.5	127
65	Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecology Letters, 2012, 15, 1439-1448.	6.4	135
66	Faustian bargains? Restoration realities in the context of biodiversity offset policies. Biological Conservation, 2012, 155, 141-148.	4.1	394
67	Effects of Connectivity and Spatial Resolution of Analyses on Conservation Prioritization across Large Extents. Conservation Biology, 2012, 26, 294-304.	4.7	55
68	Integrating environmental gap analysis with spatial conservation prioritization: A case study from Victoria, Australia. Journal of Environmental Management, 2012, 112, 240-251.	7.8	22
69	Empirical evidence for reduced protection levels across biodiversity features from target-based conservation planning. Biological Conservation, 2012, 153, 187-191.	4.1	38
70	Methods for allocation of habitat management, maintenance, restoration and offsetting, when conservation actions have uncertain consequences. Biological Conservation, 2012, 153, 41-50.	4.1	31
71	Defining spatial priorities for capercaillie <i>Tetrao urogallus</i> lekking landscape conservation in southâ€central Finland. Wildlife Biology, 2012, 18, 337-353.	1.4	15
72	Use of many low-level conservation targets reduces high-level conservation performance. Ecological Modelling, 2012, 247, 40-47.	2.5	15

#	Article	IF	Citations
73	Transparent planning for biodiversity and development in the urban fringe. Landscape and Urban Planning, 2012, 108, 140-149.	7.5	52
74	Spatial prioritization of conservation management. Conservation Letters, 2011, 4, 383-393.	5.7	105
75	Balancing alternative land uses in conservation prioritization. , 2011, 21, 1419-1426.		183
76	Setting conservation targets under budgetary constraints. Biological Conservation, 2011, 144, 650-653.	4.1	34
77	Administrative regions in conservation: Balancing local priorities with regional to global preferences in spatial planning. Biological Conservation, 2011, 144, 1719-1725.	4.1	54
78	Habitat area, quality and connectivity: striking the balance for efficient conservation. Journal of Applied Ecology, 2011, 48, 148-152.	4.0	241
79	On the limitations of graphâ€theoretic connectivity in spatial ecology and conservation. Journal of Applied Ecology, 2011, 48, 1543-1547.	4.0	119
80	Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Global Change Biology, 2010, 16, 891-904.	9.5	181
81	Securing the Conservation of Biodiversity across Administrative Levels and Spatial, Temporal, and Ecological Scales – Research Needs and Approaches of the ⟨i⟩SCALES⟨ i⟩ Project. Gaia, 2010, 19, 187-193.	0.7	54
82	Incorporating consumer–resource spatial interactions in reserve design. Ecological Modelling, 2009, 220, 725-733.	2. 5	71
83	Surrogacy and persistence in reserve selection: landscape prioritization for multiple taxa in Britain. Journal of Applied Ecology, 2009, 46, 82-91.	4.0	33
84	Climate change, connectivity and conservation decision making: back to basics. Journal of Applied Ecology, 2009, 46, 964-969.	4.0	360
85	Delaying conservation actions for improved knowledge: how long should we wait?. Ecology Letters, 2009, 12, 293-301.	6.4	157
86	How Much Compensation is Enough? A Framework for Incorporating Uncertainty and Time Discounting When Calculating Offset Ratios for Impacted Habitat. Restoration Ecology, 2009, 17, 470-478.	2.9	198
87	Metapopulation responses to patch connectivity and quality are masked by successional habitat dynamics. Ecology, 2009, 90, 1608-1619.	3.2	70
88	Assessing replacement cost of conservation areas: How does habitat loss influence priorities?. Biological Conservation, 2009, 142, 575-585.	4.1	43
89	Managing successional species: Modelling the dependence of heath fritillary populations on the spatial distribution of woodland management. Biological Conservation, 2009, 142, 2743-2751.	4.1	29
90	Applying spatial conservation prioritization software and high-resolution GIS data to a national-scale study in forest conservation. Forest Ecology and Management, 2009, 258, 2439-2449.	3.2	82

#	Article	IF	Citations
91	Integrating conservation planning and landuse planning in urban landscapes. Landscape and Urban Planning, 2009, 91, 183-194.	7. 5	151
92	Generalized Complementarity and Mapping of the Concepts of Systematic Conservation Planning. Conservation Biology, 2008, 22, 1655-1658.	4.7	41
93	A method for spatial freshwater conservation prioritization. Freshwater Biology, 2008, 53, 577-592.	2.4	184
94	A successful communityâ€level strategy for conservation prioritization. Journal of Applied Ecology, 2008, 45, 1436-1445.	4.0	82
95	Two paths to a suboptimal solution – once more about optimality in reserve selection. Biological Conservation, 2008, 141, 1919-1923.	4.1	30
96	Novel methods for the design and evaluation of marine protected areas in offshore waters. Conservation Letters, 2008, 1, 91-102.	5.7	171
97	Diminishing return on investment for biodiversity data in conservation planning. Conservation Letters, 2008, 1, 190-198.	5.7	128
98	Where and how to manage: Optimal selection of conservation actions for multiple species Biodiversity Informatics, 2008, 5, .	3.0	10
99	Landscape Zonation, benefit functions and target-based planning: Unifying reserve selection strategies. Biological Conservation, 2007, 134, 571-579.	4.1	369
100	Accounting for habitat loss rates in sequential reserve selection: Simple methods for large problems. Biological Conservation, 2007, 136, 470-482.	4.1	28
101	Area-Based Refinement for Selection of Reserve Sites with the Benefit-Function Approach. Conservation Biology, 2007, 21, 527-533.	4.7	17
102	The Boundary-Quality Penalty: a Quantitative Method for Approximating Species Responses to Fragmentation in Reserve Selection. Conservation Biology, 2007, 21, 355-364.	4.7	76
103	Uncertainty analysis favours selection of spatially aggregated reserve networks. Biological Conservation, 2006, 129, 427-434.	4.1	91
104	Replacement cost: A practical measure of site value for cost-effective reserve planning. Biological Conservation, 2006, 132, 336-342.	4.1	72
105	Connectivity and metapopulation dynamics in highly fragmented landscapes., 2006,, 44-71.		21
106	Uncertainty Analysis for Regional-Scale Reserve Selection. Conservation Biology, 2006, 20, 1688-1697.	4.7	78
107	Connectivity, Probabilities and Persistence: Comparing Reserve Selection Strategies. Biodiversity and Conservation, 2006, 15, 899-919.	2.6	61
108	Kernel-based home range method for data with irregular sampling intervals. Ecological Modelling, 2006, 194, 405-413.	2.5	65

#	Article	IF	CITATIONS
109	Planning for robust reserve networks using uncertainty analysis. Ecological Modelling, 2006, 199, 115-124.	2.5	95
110	Variance and Uncertainty in the Expected Number of Occurrences in Reserve Selection. Conservation Biology, 2005, 19, 1663-1667.	4.7	6
111	The Value of Biodiversity in Reserve Selection: Representation, Species Weighting, and Benefit Functions. Conservation Biology, 2005, 19, 2009-2014.	4.7	150
112	Methods for reserve selection: Interior point search. Biological Conservation, 2005, 124, 485-492.	4.1	22
113	Reserve Selection Using Nonlinear Species Distribution Models. American Naturalist, 2005, 165, 695-706.	2.1	53
114	Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1885-1891.	2.6	465
115	Metapopulation Dynamics and Reserve Network Design. , 2004, , 541-564.		13
116	matesoft: a program for deducing parental genotypes and estimating mating system statistics in haplodiploid species. Molecular Ecology Notes, 2004, 4, 795-797.	1.7	70
117	Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology, 2004, 41, 252-262.	4.0	175
118	SPOMSIM: software for stochastic patch occupancy models of metapopulation dynamics. Ecological Modelling, 2004, 179, 533-550.	2.5	113
119	META-X: Generic Software for Metapopulation Viability Analysis. Biodiversity and Conservation, 2004, 13, 165-188.	2.6	35
120	MIGRATION AND SURVIVAL OF PARNASSIUS SMINTHEUS: DETECTING EFFECTS OF HABITAT FOR INDIVIDUAL BUTTERFLIES. , 2004, 14, 1526-1534.		56
121	Site-Selection Algorithms and Habitat Loss. Conservation Biology, 2003, 17, 1402-1413.	4.7	103
122	SINGLE-SPECIES DYNAMIC SITE SELECTION. , 2002, 12, 913-926.		98
123	Implications of empirical data quality to metapopulation model parameter estimation and application. Oikos, 2002, 96, 516-530.	2.7	156
124	SIMPLE CONNECTIVITY MEASURES IN SPATIAL ECOLOGY. Ecology, 2002, 83, 1131-1145.	3.2	657
125	Design of reserve networks and the persistence of biodiversity. Trends in Ecology and Evolution, 2001, 16, 242-248.	8.7	386
126	Metapopulation dynamics of the bog fritillary butterfly: movements between habitat patches. Oikos, 2001, 92, 491-500.	2.7	103

#	Article	IF	CITATIONS
127	On the use of connectivity measures in spatial ecology. Oikos, 2001, 95, 147-151.	2.7	236
128	Simulated Evolutionary Optimization and Local Search: Introduction and Application to Tree Search. Cladistics, 2001, 17, S12-S25.	3.3	15
129	Simulated Evolutionary Optimization and Local Search: Introduction and Application to Tree Search. Cladistics, 2001, 17, S12-S25.	3.3	10
130	The equilibrium assumption in estimating the parameters of metapopulation models. Journal of Animal Ecology, 2000, 69, 143-153.	2.8	62
131	ESTIMATING THE PARAMETERS OF SURVIVAL AND MIGRATION OF INDIVIDUALS IN METAPOPULATIONS. Ecology, 2000, 81, 239-251.	3.2	263
132	PATCH OCCUPANCY MODELS OF METAPOPULATION DYNAMICS: EFFICIENT PARAMETER ESTIMATION USING IMPLICIT STATISTICAL INFERENCE. Ecology, 1999, 80, 1031-1043.	3.2	155
133	Searching for Most Parsimonious Trees with Simulated Evolutionary Optimization. Cladistics, 1999, 15, 39-50.	3.3	50
134	Searching for Most Parsimonious Trees with Simulated Evolutionary Optimization. Cladistics, 1999, 15, 39-50.	3.3	17
135	METAPOPULATION DYNAMICS: EFFECTS OF HABITAT QUALITY AND LANDSCAPE STRUCTURE. Ecology, 1998, 79, 2503-2515.	3.2	386
136	Longâ€Term Dynamics in a Metapopulation of the American Pika. American Naturalist, 1998, 152, 530-542.	2.1	171
137	Minimum Viable Metapopulation Size. American Naturalist, 1996, 147, 527-541.	2.1	303
138	The Quantitative Incidence Function Model and Persistence of an Endangered Butterfly Metapopulation. Conservation Biology, 1996, 10, 578-590.	4.7	184
139	Habitat Destruction and Coexistence of Competitors in a Spatially Realistic Metapopulation Model. Journal of Animal Ecology, 1995, 64, 141.	2.8	92