
Bruno Georg Oertel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3445598/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The μ-opioid receptor gene polymorphism 118A>G depletes alfentanil-induced analgesia and protects against respiratory depression in homozygous carriers. Pharmacogenetics and Genomics, 2006, 16, 625-636.	1.5	137
2	Chronic opioid use is associated with increased DNA methylation correlating with increased clinical pain. Pain, 2013, 154, 15-23.	4.2	136
3	A Common Human μ-Opioid Receptor Genetic Variant Diminishes the Receptor Signaling Efficacy in Brain Regions Processing the Sensory Information of Pain. Journal of Biological Chemistry, 2009, 284, 6530-6535.	3.4	135
4	Differential Opioid Action on Sensory and Affective Cerebral Pain Processing. Clinical Pharmacology and Therapeutics, 2008, 83, 577-588.	4.7	121
5	Pharmacokinetics of Non-Intravenous Formulations of Fentanyl. Clinical Pharmacokinetics, 2013, 52, 23-36.	3.5	107
6	Selective Antagonism of Opioid-Induced Ventilatory Depression by an Ampakine Molecule in Humans Without Loss of Opioid Analgesia. Clinical Pharmacology and Therapeutics, 2010, 87, 204-211.	4.7	105
7	Genetic–epigenetic interaction modulates µ-opioid receptor regulation. Human Molecular Genetics, 2012, 21, 4751-4760.	2.9	105
8	Quick Discrimination of Adelta and C Fiber Mediated Pain Based on Three Verbal Descriptors. PLoS ONE, 2010, 5, e12944.	2.5	94
9	Modulation of the central nervous effects of levomethadone by genetic polymorphisms potentially affecting its metabolism, distribution, and drug action. Clinical Pharmacology and Therapeutics, 2006, 79, 72-89.	4.7	91
10	Separating brain processing of pain fromthat of stimulus intensity. Human Brain Mapping, 2012, 33, 883-894.	3.6	69
11	Clinical pharmacology of analgesics assessed with human experimental pain models: bridging basic and clinical research. British Journal of Pharmacology, 2013, 168, 534-553.	5.4	64
12	The Partial 5-Hydroxytryptamine1A Receptor Agonist Buspirone does not Antagonize Morphine-induced Respiratory Depression in Humans. Clinical Pharmacology and Therapeutics, 2007, 81, 59-68.	4.7	50
13	Pattern of neuropathic pain induced by topical capsaicin application in healthy subjects. Pain, 2015, 156, 405-414.	4.2	43
14	Human models of pain for the prediction of clinical analgesia. Pain, 2014, 155, 2014-2021.	4.2	40
15	µ-opioid receptor gene variant <i>OPRM1</i> 118 A>G: a summary of its molecular and clinical consequences for pain. Pharmacogenomics, 2013, 14, 1915-1925.	1.3	37
16	The Human Operculo-Insular Cortex Is Pain-Preferentially but Not Pain-Exclusively Activated by Trigeminal and Olfactory Stimuli. PLoS ONE, 2012, 7, e34798.	2.5	30
17	Brain Mapping-Based Model of Δ9-Tetrahydrocannabinol Effects on Connectivity in the Pain Matrix. Neuropsychopharmacology, 2016, 41, 1659-1669.	5.4	29
18	Consequences of a Human TRPA1 Genetic Variant on the Perception of Nociceptive and Olfactory Stimuli. PLoS ONE, 2014, 9, e95592.	2.5	26

BRUNO GEORG OERTEL

#	Article	IF	CITATIONS
19	Pharmacoepigenetics of the role of DNA methylation in μ-opioid receptor expression in different human brain regions. Epigenomics, 2016, 8, 1583-1599.	2.1	18
20	Machine-learned analysis of the association of next-generation sequencing–based human TRPV1 and TRPA1 genotypes with the sensitivity to heat stimuli and topically applied capsaicin. Pain, 2018, 159, 1366-1381.	4.2	17
21	Linkage between Increased Nociception and Olfaction via a SCN9A Haplotype. PLoS ONE, 2013, 8, e68654.	2.5	17
22	Quantitative sensory testing response patterns to capsaicin- and ultraviolet-B–induced local skin hypersensitization in healthy subjects: a machine-learned analysis. Pain, 2018, 159, 11-24.	4.2	16
23	Effects of 20 mg oral Δ ⁹ â€ŧetrahydrocannabinol on the olfactory function of healthy volunteers. British Journal of Clinical Pharmacology, 2014, 78, 961-969.	2.4	15
24	Multimodal Distribution of Human Cold Pain Thresholds. PLoS ONE, 2015, 10, e0125822.	2.5	14
25	Central encoding of the strength of intranasal chemosensory trigeminal stimuli in a human experimental pain setting. Human Brain Mapping, 2020, 41, 5240-5254.	3.6	12
26	Effects of oral Δ9-tetrahydrocannabinol on the cerebral processing of olfactory input in healthy non-addicted subjects. European Journal of Clinical Pharmacology, 2017, 73, 1579-1587.	1.9	11
27	Extended cortical activations during evaluating successive pain stimuli. Social Cognitive and Affective Neuroscience, 2012, 7, 698-707.	3.0	9
28	A More Pessimistic Life Orientation Is Associated With Experimental Inducibility of a Neuropathy-like Pain Pattern inÂHealthy Individuals. Journal of Pain, 2015, 16, 791-800.	1.4	8
29	A small yet comprehensive subset of human experimental pain models emerging from correlation analysis with a clinical quantitative sensory testing protocol in healthy subjects. European Journal of Pain, 2016, 20, 777-789.	2.8	7
30	Using a Standardized Clinical Quantitative Sensory Testing Battery to Judge the Clinical Relevance of Sensory Differences Between Adjacent Body Areas. Clinical Journal of Pain, 2017, 33, 37-43.	1.9	7
31	Necessity and Risks of Arterial Blood Sampling in Healthy Volunteer Studies. Clinical Pharmacokinetics, 2012, 51, 629-638.	3.5	6
32	Serum 4β-hydroxycholesterol increases during fluconazole treatment. European Journal of Clinical Pharmacology, 2021, 77, 659-669.	1.9	6
33	A data science approach to the selection of most informative readouts of the human intradermal capsaicin pain model to assess pregabalin effects. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 318-331.	2.5	4
34	Non-invasive combined surrogates of remifentanil blood concentrations with relevance to analgesia. Naunyn-Schmiedeberg's Archives of Pharmacology, 2013, 386, 865-873.	3.0	3
35	Delta-9-tetrahydrocannabinol reduces the performance in sensory delayed discrimination tasks. A pharmacological-fMRI study in healthy volunteers. IBRO Reports, 2019, 7, 117-128.	0.3	3
36	Cytochrome P450 Epoxygenase Dependence of Opioid Analgesia: Fluconazole Does Not Interfere With Remifentanil-Mediated Analgesia in Human Subjects. Clinical Pharmacology and Therapeutics, 2014, 96, 684-693.	4.7	2

#	Article	IF	CITATIONS
37	Reply to "Can topical capsaicin induce a neuropathic pain?― Pain, 2015, 156, 1369-1370.	4.2	2
38	Machine-Learned Association of Next-Generation Sequencing-Derived Variants in Thermosensitive Ion Channels Genes with Human Thermal Pain Sensitivity Phenotypes. International Journal of Molecular Sciences, 2020, 21, 4367.	4.1	2
39	Inverted Perceptual Judgment of Nociceptive Stimuli at Threshold Level following Inconsistent Cues. PLoS ONE, 2015, 10, e0132069.	2.5	1