Jeffrey L Dage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3445058/publications.pdf

Version: 2024-02-01

IFFEDEVI DACE

#	Article	IF	CITATIONS
1	Detecting amyloid positivity in early Alzheimer's disease using combinations of plasma Aβ42/Aβ40 and pâ€ŧau. Alzheimer's and Dementia, 2022, 18, 283-293.	0.8	72
2	Comparison of CSF phosphorylated tau 181 and 217 for cognitive decline. Alzheimer's and Dementia, 2022, 18, 602-611.	0.8	20
3	Characterization of preâ€analytical sample handling effects on a panel of Alzheimer's disease–related bloodâ€based biomarkers: Results from the Standardization of Alzheimer's Blood Biomarkers (SABB) working group. Alzheimer's and Dementia, 2022, 18, 1484-1497.	0.8	84
4	Cellular localization of p-tau217 in brain and its association with p-tau217 plasma levels. Acta Neuropathologica Communications, 2022, 10, 3.	5.2	36
5	Correlation of plasma and neuroimaging biomarkers in Alzheimer's disease. Annals of Clinical and Translational Neurology, 2022, 9, 756-761.	3.7	12
6	Bloodâ€based biomarkers for Alzheimer's disease. EMBO Molecular Medicine, 2022, 14, e14408.	6.9	122
7	Diagnostic and prognostic performance to detect Alzheimer's disease and clinical progression of a novel assay for plasma p-tau217. Alzheimer's Research and Therapy, 2022, 14, 67.	6.2	18
8	Performance of plasma phosphorylated tau 181 and 217 in the community. Nature Medicine, 2022, 28, 1398-1405.	30.7	114
9	Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations. Nature Aging, 2021, 1, 114-123.	11.6	94
10	Plasma Phosphoâ€Tau Identifies Alzheimer's Coâ€Pathology in Patients with Lewy Body Disease. Movement Disorders, 2021, 36, 767-771.	3.9	34
11	Associations of Plasma Phospho-Tau217 Levels With Tau Positron Emission Tomography in Early Alzheimer Disease. JAMA Neurology, 2021, 78, 149.	9.0	176
12	Plasma pâ€ŧau181, pâ€ŧau217, and other bloodâ€based Alzheimer's disease biomarkers in a multiâ€ethnic, community study. Alzheimer's and Dementia, 2021, 17, 1353-1364.	0.8	160
13	Cross-Sectional Exploration of Plasma Biomarkers of Alzheimer's Disease in Down Syndrome: Early Data from the Longitudinal Investigation for Enhancing Down Syndrome Research (LIFE-DSR) Study. Journal of Clinical Medicine, 2021, 10, 1907.	2.4	15
14	Cross-platform validation of neurotransmitter release impairments in schizophrenia patient-derived <i>NRXN1</i> -mutant neurons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	49
15	Prediction of future Alzheimer's disease dementia using plasma phospho-tau combined with other accessible measures. Nature Medicine, 2021, 27, 1034-1042.	30.7	236
16	Soluble Pâ€ŧau217 reflects amyloid and tau pathology and mediates the association of amyloid with tau. EMBO Molecular Medicine, 2021, 13, e14022.	6.9	90
17	Plasma markers predict changes in amyloid, tau, atrophy and cognition in non-demented subjects. Brain, 2021, 144, 2826-2836.	7.6	65
18	Plasma biomarkers of Alzheimer's disease improve prediction of cognitive decline in cognitively unimpaired elderly populations. Nature Communications, 2021, 12, 3555.	12.8	115

JEFFREY L DAGE

#	Article	IF	CITATIONS
19	Tau PET correlates with different Alzheimer's diseaseâ€related features compared to CSF and plasma pâ€ŧau biomarkers. EMBO Molecular Medicine, 2021, 13, e14398.	6.9	58
20	Comparing the Clinical Utility and Diagnostic Performance of CSF P-Tau181, P-Tau217, and P-Tau231 Assays. Neurology, 2021, 97, e1681-e1694.	1.1	60
21	Comparison of Plasma Phosphorylated Tau Species With Amyloid and Tau Positron Emission Tomography, Neurodegeneration, Vascular Pathology, and Cognitive Outcomes. JAMA Neurology, 2021, 78, 1108.	9.0	114
22	Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer's disease and frontotemporal lobar degeneration: a retrospective diagnostic performance study. Lancet Neurology, The, 2021, 20, 739-752.	10.2	220
23	Clinical and analytical comparison of six Simoa assays for plasma P-tau isoforms P-tau181, P-tau217, and P-tau231. Alzheimer's Research and Therapy, 2021, 13, 198.	6.2	87
24	Longitudinal plasma p-tau217 is increased in early stages of Alzheimer's disease. Brain, 2020, 143, 3234-3241.	7.6	150
25	Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA - Journal of the American Medical Association, 2020, 324, 772.	7.4	640
26	Plasma phosphoâ€ŧau217 can detect Alzheimerâ€like pathology in Parkinson's disease with dementia and dementia with Lewy bodies. Alzheimer's and Dementia, 2020, 16, e042468.	0.8	0
27	Plasma phosphoâ€ŧau217 is a potential early diagnostic and prognostic biomarker of Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e042489.	0.8	Ο
28	Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nature Medicine, 2020, 26, 379-386.	30.7	643
29	Diagnostic value of plasma phosphorylated tau181 in Alzheimer's disease and frontotemporal lobar degeneration. Nature Medicine, 2020, 26, 387-397.	30.7	471
30	Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer's disease. Nature Communications, 2020, 11, 1683.	12.8	252
31	Aβ deposition is associated with increases in soluble and phosphorylated tau that precede a positive Tau PET in Alzheimer's disease. Science Advances, 2020, 6, eaaz2387.	10.3	202
32	Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer's disease. EMBO Molecular Medicine, 2019, 11, e11170.	6.9	228
33	Plasma phosphoâ€tau181 increases with Alzheimer's disease clinical severity and is associated with tau― and amyloidâ€positron emission tomography. Alzheimer's and Dementia, 2018, 14, 989-997.	0.8	386
34	P1â€326: THE USE OF THE DIGITAL CLOCK DRAWING TEST (DCTCLOCKâ,,¢) IN THE SCREENING PHASE OF CLINI TRIALS FOR ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P416.	CAL	0
35	Genome-wide RNAseq study of the molecular mechanisms underlying microglia activation in response to pathological tau perturbation in the rTg4510 tau transgenic animal model. Molecular Neurodegeneration, 2018, 13, 65.	10.8	62
36	Association of Plasma Total Tau Level With Cognitive Decline and Risk of Mild Cognitive Impairment or Dementia in the Mayo Clinic Study on Aging. JAMA Neurology, 2017, 74, 1073.	9.0	149

JEFFREY L DAGE

#	Article	IF	CITATIONS
37	P3-152: Levels of TAU Protein in Plasma are Associated with Neurodegeneration and Cognitive Function in a Population-Based Elderly Cohort. , 2016, 12, P877-P878.		1
38	A digital enzyme-linked immunosorbent assay for ultrasensitive measurement of amyloid-β 1–42 peptide in human plasma with utility for studies of Alzheimer's disease therapeutics. Alzheimer's Research and Therapy, 2016, 8, 58.	6.2	61
39	P4-127: Exploring the Utility of CSF Neurogranin Levels in An Alzheimer's Disease Clinical Trial. , 2016, 12, P1062-P1062.		0
40	Levels of tau protein in plasma are associated with neurodegeneration and cognitive function in a populationâ€based elderly cohort. Alzheimer's and Dementia, 2016, 12, 1226-1234.	0.8	107
41	Pharmacological Characterisation of Nicotinic Acetylcholine Receptors Expressed in Human iPSC-Derived Neurons. PLoS ONE, 2015, 10, e0125116.	2.5	29
42	Transcriptomic Analysis of Induced Pluripotent Stem Cells Derived from Patients with Bipolar Disorder from an Old Order Amish Pedigree. PLoS ONE, 2015, 10, e0142693.	2.5	32
43	Pharmacological characterisation of ligand- and voltage-gated ion channels expressed in human iPSC-derived forebrain neurons. Psychopharmacology, 2014, 231, 1105-1124.	3.1	48
44	Constitutive secretion of tau protein by an unconventional mechanism. Neurobiology of Disease, 2012, 48, 356-366.	4.4	198
45	Distributed Drug Discovery, Part 3: Using D ³ Methodology to Synthesize Analogs of an Anti-Melanoma Compound. ACS Combinatorial Science, 2009, 11, 34-43.	3.3	21
46	Distributed Drug Discovery, Part 2: Global Rehearsal of Alkylating Agents for the Synthesis of Resin-Bound Unnatural Amino Acids and Virtual D ³ Catalog Construction. ACS Combinatorial Science, 2009, 11, 14-33.	3.3	35
47	Application of LC/MS and related techniques to high-throughput drug discovery. Drug Discovery Today, 2008, 13, 417-423.	6.4	37
48	Determination of Diethylpyrocarbonate-Modified Amino Acid Residues in α1-Acid Clycoprotein by High-Performance Liquid Chromatography Electrospray Ionization–Mass Spectrometry and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight–Mass Spectrometry. Analytical Biochemistry, 1998, 257, 176-185.	2.4	21
49	Site localization of sialyl Lewisx antigen on Â1-acid glycoprotein by high performance liquid chromatography-electrospray mass spectrometry. Glycobiology, 1998, 8, 755-760.	2.5	42
50	Evidence for a Novel Pentyl Radical Adduct of the Cyclic Nitrone Spin Trap MDL 101,002. Free Radical Biology and Medicine, 1997, 22, 807-812.	2.9	8