Steven M Singer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/344439/publications.pdf

Version: 2024-02-01

136950 189892 5,082 53 32 50 h-index citations g-index papers 54 54 54 3703 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Giardiasis Alters Intestinal Fatty Acid Binding Protein (I-FABP) and Plasma Cytokines Levels in Children in Brazil. Pathogens, 2020, 9, 7.	2.8	16
2	<i>Giardia lamblia</i> : Laboratory Maintenance, Lifecycle Induction, and Infection of Murine Models. Current Protocols in Microbiology, 2020, 57, e102.	6.5	9
3	What's eating you? An update on Giardia, the microbiome and the immune response. Current Opinion in Microbiology, 2020, 58, 87-92.	5.1	9
4	Recent insights into innate and adaptive immune responses to Giardia. Advances in Parasitology, 2019, 106, 171-208.	3.2	30
5	Interleukin (IL)-21 in Inflammation and Immunity During Parasitic Diseases. Frontiers in Cellular and Infection Microbiology, 2019, 9, 401.	3.9	27
6	Proliferation of Resident Macrophages Is Dispensable for Protection during <i>Giardia duodenalis</i> Infections. ImmunoHorizons, 2019, 3, 412-421.	1.8	12
7	Recent advances in the Giardia–host relationship reveal danger lurking behind the smile. PLoS Neglected Tropical Diseases, 2018, 12, e0006625.	3.0	16
8	Giardia Alters Commensal Microbial Diversity throughout the Murine Gut. Infection and Immunity, 2017, 85, .	2.2	104
9	The Intersection of Immune Responses, Microbiota, and Pathogenesis in Giardiasis. Trends in Parasitology, 2017, 33, 901-913.	3.3	105
10	Stool antigen immunodetection for diagnosis of Giardia duodenalis infection in human subjects with HIV and cancer. Journal of Microbiological Methods, 2017, 141, 35-41.	1.6	13
11	Cross-modulation of pathogen-specific pathways enhances malnutrition during enteric co-infection with Giardia lamblia and enteroaggregative Escherichia coli. PLoS Pathogens, 2017, 13, e1006471.	4.7	68
12	Giardiasis as a neglected disease in Brazil: Systematic review of 20 years of publications. PLoS Neglected Tropical Diseases, 2017, 11, e0006005.	3.0	54
13	Immunity to Intestinal Protozoa: Entamoeba , Cryptosporidium , and Giardia. , 2016, , 133-141.		2
14	Adaptive immune response in symptomatic and asymptomatic enteric protozoal infection: evidence for a determining role of parasite genetic heterogeneity in host immunity to human giardiasis. Microbes and Infection, 2016, 18, 687-695.	1.9	23
15	The Microbiota Contributes to CD8 ⁺ T Cell Activation and Nutrient Malabsorption following Intestinal Infection with Giardia duodenalis. Infection and Immunity, 2016, 84, 2853-2860.	2.2	42
16	Control of Giardiasis by Interleukin-17 in Humans and Miceâ€"Are the Questions All Answered?. Vaccine Journal, 2016, 23, 2-5.	3.1	20
17	Complement Activation by Giardia duodenalis Parasites through the Lectin Pathway Contributes to Mast Cell Responses and Parasite Control. Infection and Immunity, 2016, 84, 1092-1099.	2.2	39
18	The IL-12 Response of Primary Human Dendritic Cells and Monocytes to <i>Toxoplasma gondii</i> Is Stimulated by Phagocytosis of Live Parasites Rather Than Host Cell Invasion. Journal of Immunology, 2016, 196, 345-356.	0.8	77

#	Article	IF	Citations
19	Lack of the programmed death-1 receptor renders host susceptible to enteric microbial infection through impairing the production of the mucosal natural killer cell effector molecules. Journal of Leukocyte Biology, 2016, 99, 475-482.	3.3	20
20	Genotyping and Descriptive Proteomics of a Potential Zoonotic Canine Strain of Giardia duodenalis, Infective to Mice. PLoS ONE, 2016, 11, e0164946.	2.5	12
21	Macrophages expressing arginase 1 and nitric oxide synthase 2 accumulate in the small intestine during Giardia lamblia infection. Microbes and Infection, 2015, 17, 462-467.	1.9	43
22	Resistance to reinfection in mice as a vaccine model for giardiasis. Human Vaccines and Immunotherapeutics, 2014, 10, 1536-1543.	3.3	9
23	Transcriptomic Analysis of the Host Response to Giardia duodenalis Infection Reveals Redundant Mechanisms for Parasite Control. MBio, 2013, 4, e00660-13.	4.1	44
24	Regulation of intestinal epithelial cell cytoskeletal remodeling by cellular immunity following gut infection. Mucosal Immunology, 2013, 6, 369-378.	6.0	35
25	Persistent G. lamblia impairs growth in a murine malnutrition model. Journal of Clinical Investigation, 2013, 123, 2672-2684.	8.2	90
26	Giardia duodenalis: Dendritic cell defects in IL-6 deficient mice contribute to susceptibility to intestinal infection. Experimental Parasitology, 2012, 130, 288-291.	1.2	36
27	Host Immunity and Pathogen Strain Contribute to Intestinal Disaccharidase Impairment following Gut Infection. Journal of Immunology, 2011, 187, 3769-3775.	0.8	96
28	Immunology of Giardiasis. , 2011, , 319-331.		1
29	Giardia duodenalis: The double-edged sword of immune responses in giardiasis. Experimental Parasitology, 2010, 126, 292-297.	1.2	96
30	A Meta-analysis of the Effectiveness of Albendazole Compared with Metronidazole as Treatments for Infections with Giardia duodenalis. PLoS Neglected Tropical Diseases, 2010, 4, e682.	3.0	101
31	Phosphoinositide 3-Kinase-Dependent Inhibition of Dendritic Cell Interleukin-12 Production by <i> Giardia lamblia </i> Infection and Immunity, 2009, 77, 685-693.	2.2	73
32	Mast Cell-Mediated Changes in Smooth Muscle Contractility during Mouse Giardiasis. Infection and Immunity, 2007, 75, 4514-4518.	2.2	61
33	Tumour necrosis factor ? contributes to protection against Giardia lamblia infection in mice. Parasite Immunology, 2007, 29, 367-374.	1.5	46
34	Neuronal Nitric Oxide Synthase Is Necessary for Elimination of <i>Giardia lamblia</i> Infections in Mice. Journal of Immunology, 2006, 176, 516-521.	0.8	81
35	Epigenetic mechanisms are involved in the control of Giardia lamblia antigenic variation. Molecular Microbiology, 2006, 61, 1533-1542.	2.5	79
36	Yeast-like mRNA Capping Apparatus in Giardia lamblia. Journal of Biological Chemistry, 2005, 280, 12077-12086.	3.4	31

#	Article	IF	Citations
37	Mast Cell-Dependent Control of Giardia lamblia Infections in Mice. Infection and Immunity, 2004, 72, 6642-6649.	2.2	104
38	Role of Interleukin-6 in the Control of Acute and Chronic Giardia lamblia Infections in Mice. Infection and Immunity, 2003, 71, 1566-1568.	2.2	83
39	Initiator and upstream elements in the $\hat{l}\pm 2$ -tubulin promoter of Giardia lamblia. Molecular and Biochemical Parasitology, 2001, 113, 157-169.	1.1	83
40	The abundance of sterile transcripts in Giardia lamblia. Nucleic Acids Research, 2001, 29, 4674-4683.	14.5	54
41	Targeting of proteins to the nuclei of Giardia lamblia. Molecular and Biochemical Parasitology, 2000, 106, 315-319.	1.1	20
42	Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9258-9263.	7.1	281
43	T-Cell-Dependent Control of Acute <i>Giardia lamblia</i> li>Infections in Mice. Infection and Immunity, 2000, 68, 170-175.	2.2	139
44	Episomal and integrated maintenance of foreign DNA in Giardia lamblia. Molecular and Biochemical Parasitology, 1998, 92, 59-69.	1.1	124
45	Prevention of diabetes in NOD mice by a mutated I-Ab transgene. Diabetes, 1998, 47, 1570-1577.	0.6	62
46	Reduction in Diabetes Incidence in an I-Ag7 Transgenic Nonobese Diabetic Mouse Line. Diabetes, 1997, 46, 1970-1974.	0.6	14
47	High copy number I-Ab transgenes induce production of IgE through an interluekin 4-dependent mechanism Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2947-2952.	7.1	17
48	The Role of MHC Class II Genes in Susceptibility and Resistance to Type I Diabetes Mellitus in the NOD Mouse. Hormone and Metabolic Research, 1996, 28, 287-288.	1.5	13
49	Reply from Liblau, Singer and McDevitt. Trends in Immunology, 1995, 16, 458.	7.5	0
50	Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Trends in Immunology, 1995, 16, 34-38.	7.5	1,084
51	Effect of tumor necrosis factor alpha on insulin-dependent diabetes mellitus in NOD mice. I. The early development of autoimmunity and the diabetogenic process Journal of Experimental Medicine, 1994, 180, 995-1004.	8.5	302
52	Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature, 1993, 366, 72-75.	27.8	975
53	An Abd transgene prevents diabetes in nonobese diabetic mice by inducing regulatory T cells Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9566-9570.	7.1	107