Burkhard Bechinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/344372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1529-1539.	2.6	501
2	The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1462, 157-183.	2.6	435
3	Structure and orientation of the antibiotic peptide magainin in membranes by solidâ€state nuclear magnetic resonance spectroscopy. Protein Science, 1993, 2, 2077-2084.	7.6	367
4	Histidine-rich amphipathic peptide antibiotics promote efficient delivery of DNA into mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1564-1568.	7.1	212
5	Towards Membrane Protein Design: pH-sensitive Topology of Histidine-containing Polypeptides. Journal of Molecular Biology, 1996, 263, 768-775.	4.2	193
6	The Interactions of Histidine-containing Amphipathic Helical Peptide Antibiotics with Lipid Bilayers. Journal of Biological Chemistry, 1999, 274, 29115-29121.	3.4	153
7	Membrane Helix Orientation from Linear Dichroism of Infrared Attenuated Total Reflection Spectra. Biophysical Journal, 1999, 76, 552-563.	0.5	141
8	Zwitterionic Phospholipids and Sterols Modulate Antimicrobial Peptide-Induced Membrane Destabilization. Biophysical Journal, 2007, 93, 4289-4299.	0.5	139
9	Alignment of Lysine-Anchored Membrane Peptides under Conditions of Hydrophobic Mismatch:Â A CD,15N and31P Solid-State NMR Spectroscopy Investigation. Biochemistry, 2000, 39, 13106-13114.	2.5	125
10	Antimicrobial Peptides: A Potent Alternative to Antibiotics. Antibiotics, 2021, 10, 1095.	3.7	125
11	Cationic amphipathic histidine-rich peptides for gene delivery. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 301-307.	2.6	116
12	15N chemical shift referencing in solid state NMR. Solid State Nuclear Magnetic Resonance, 2014, 61-62, 15-18.	2.3	112
13	Interaction of electric dipoles with phospholipid head groups. A deuterium and phosphorus-31 NMR study of phloretin and phloretin analogs in phosphatidylcholine membranes. Biochemistry, 1991, 30, 3923-3929.	2.5	110
14	The membrane interactions of antimicrobial peptides revealed by solid-state NMR spectroscopy. Chemistry and Physics of Lipids, 2012, 165, 282-301.	3.2	110
15	Crystal structure and functional mechanism of a human antimicrobial membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4586-4591.	7.1	104
16	Alignment and structural analysis of membrane polypeptides by15N and31P solid-state NMR spectroscopy. Concepts in Magnetic Resonance, 2003, 18A, 130-145.	1.3	102
17	Structure and Topology of the Huntingtin 1–17 Membrane Anchor byÂaÂCombined Solution and Solid-State NMR Approach. Biophysical Journal, 2013, 105, 699-710.	0.5	101
18	Structure and Function of Membrane-Lytic Peptides. Critical Reviews in Plant Sciences, 2004, 23, 271-292.	5.7	97

#	Article	IF	CITATIONS
19	Membrane order perturbation in the presence of antimicrobial peptides by 2H solid-state NMR spectroscopy. Biochimie, 2009, 91, 734-743.	2.6	97
20	Structure and Alignment of the Membrane-Associated Peptaibols Ampullosporin A and Alamethicin by Oriented 15N and 31P Solid-State NMR Spectroscopy. Biophysical Journal, 2009, 96, 86-100.	0.5	95
21	Lipid-Controlled Peptide Topology and Interactions in Bilayers: Structural Insights into the Synergistic Enhancement of the Antimicrobial Activities of PGLa and Magainin 2. Biophysical Journal, 2011, 100, 1473-1480.	0.5	95
22	Detergent-like properties of magainin antibiotic peptides: A 31P solid-state NMR spectroscopy study. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1712, 101-108.	2.6	90
23	The antibiotic and DNAâ€transfecting peptide LAH4 selectively associates with, and disorders, anionic lipids in mixed membranes. FASEB Journal, 2006, 20, 320-322.	0.5	90
24	Rationalizing the membrane interactions of cationic amphipathic antimicrobial peptides by their molecular shape. Current Opinion in Colloid and Interface Science, 2009, 14, 349-355.	7.4	87
25	Design and Evaluation of Histidine-Rich Amphipathic Peptides for siRNA Delivery. Pharmaceutical Research, 2010, 27, 1426-1436.	3.5	87
26	The SMART model: Soft Membranes Adapt and Respond, also Transiently, in the presence of antimicrobial peptides. Journal of Peptide Science, 2015, 21, 346-355.	1.4	87
27	Enhanced Membrane Disruption and Antibiotic Action against Pathogenic Bacteria by Designed Histidine-Rich Peptides at Acidic pH. Antimicrobial Agents and Chemotherapy, 2006, 50, 3305-3311.	3.2	86
28	Solid-State NMR Spectroscopy of Oriented Membrane Polypeptides at 100 K with Signal Enhancement by Dynamic Nuclear Polarization. Journal of the American Chemical Society, 2010, 132, 5940-5941.	13.7	84
29	Membrane Interactions of the Amphipathic Amino Terminus of Huntingtin. Biochemistry, 2013, 52, 847-858.	2.5	83
30	The Multifaceted Antibacterial Mechanisms of the Pioneering Peptide Antibiotics Tyrocidine and Gramicidin S. MBio, 2018, 9, .	4.1	83
31	Biophysical Investigations Elucidating the Mechanisms of Action of Antimicrobial Peptides and Their Synergism. Biomolecules, 2018, 8, 18.	4.0	83
32	15N and 31P Solid-State NMR Investigations on the Orientation of Zervamicin II and Alamethicin in Phosphatidylcholine Membranes. Biochemistry, 2001, 40, 9428-9437.	2.5	82
33	The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: Established concepts and novel developments. Biophysical Chemistry, 2011, 153, 115-125.	2.8	82
34	Structural Determinants of Antimicrobial and Antiplasmodial Activity and Selectivity in Histidine-rich Amphipathic Cationic Peptides. Journal of Biological Chemistry, 2009, 284, 119-133.	3.4	79
35	Insights into the mechanisms of action of host defence peptides from biophysical and structural investigations. Journal of Peptide Science, 2011, 17, 306-314.	1.4	78

Peptide structural analysis by solid-state NMR spectroscopy. , 1999, 51, 174-190.

76

#	Article	IF	CITATIONS
37	Investigations of Polypeptide Rotational Diffusion in Aligned Membranes by 2H and 15N Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2004, 126, 16676-16683.	13.7	76
38	Solution Structure and Orientation of the Transmembrane Anchor Domain of the HIV-1-Encoded Virus Protein U by High-Resolution and Solid-State NMR Spectroscopy. Biochemistry, 1999, 38, 5272-5282.	2.5	74
39	The Topology of Lysine-Containing Amphipathic Peptides in Bilayers by Circular Dichroism, Solid-State NMR, and Molecular Modeling. Biophysical Journal, 2000, 79, 2644-2656.	0.5	68
40	Membrane structure and conformational changes of the antibiotic heterodimeric peptide distinctin by solid-state NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16639-16644.	7.1	67
41	The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations. Advances in Experimental Medicine and Biology, 2019, 1117, 33-64.	1.6	67
42	Tilt and Rotational Pitch Angle of Membrane-Inserted Polypeptides from Combined15N and2H Solid-State NMR Spectroscopyâ€. Biochemistry, 2004, 43, 10502-10512.	2.5	65
43	A Cellâ€Penetrating Foldamer with a Bioreducible Linkage for Intracellular Delivery of DNA. Angewandte Chemie - International Edition, 2015, 54, 11133-11137.	13.8	63
44	The alignment, structure and dynamics of membrane-associated polypeptides by solid-state NMR spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1666, 190-204.	2.6	62
45	Two distinct amphipathic peptide antibiotics with systemic efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19446-19454.	7.1	61
46	Solution NMR structures of the antimicrobial peptides phylloseptin-1, -2, and -3 and biological activity: The role of charges and hydrogen bonding interactions in stabilizing helix conformations. Peptides, 2008, 29, 1633-1644.	2.4	59
47	Structure and Dynamics of Membrane-associated ICP47, a Viral Inhibitor of the MHC I Antigen-processing Machinery. Journal of Biological Chemistry, 2006, 281, 30365-30372.	3.4	58
48	NMR Structures of the Histidine-Rich Peptide LAH4 in Micellar Environments: Membrane Insertion, pH-Dependent Mode of Antimicrobial Action, and DNA Transfection. Biophysical Journal, 2010, 99, 2507-2515.	0.5	57
49	Optimising histidine rich peptides for efficient DNA delivery in the presence of serum. Journal of Controlled Release, 2007, 118, 95-104.	9.9	56
50	Characterization of the gene transfer process mediated by histidine-rich peptides. Journal of Molecular Medicine, 2007, 85, 191-201.	3.9	56
51	Deciphering Membrane Insertion of the Diphtheria Toxin T Domain by Specular Neutron Reflectometry and Solid-State NMR Spectroscopy. Journal of Molecular Biology, 2009, 391, 872-883.	4.2	54
52	A spectroscopic study of the membrane interaction of the antimicrobial peptide Pleurocidin. Molecular Membrane Biology, 2006, 23, 185-194.	2.0	53
53	Macromolecular Crowding at Membrane Interfaces: Adsorption and Alignment of Membrane Peptides. Journal of Molecular Biology, 2008, 375, 376-385.	4.2	52
54	pH-Dependent Membrane Interactions of the Histidine-Rich Cell-Penetrating Peptide LAH4-L1. Biophysical Journal, 2017, 113, 1290-1300.	0.5	51

#	Article	IF	CITATIONS
55	Bilayer Sample for Fast or Slow Magic Angle Oriented Sample Spinning Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2002, 124, 1146-1147.	13.7	50
56	Self-Promoted Cellular Uptake of Peptide/DNA Transfection Complexes. Biochemistry, 2007, 46, 11253-11262.	2.5	50
57	Aggregation and membrane permeabilizing properties of designed histidineâ€containing cationic linear peptide antibiotics. Journal of Peptide Science, 2008, 14, 488-495.	1.4	49
58	Membrane Insertion and Orientation of Polyalanine Peptides: A 15N Solid-State NMR Spectroscopy Investigation. Biophysical Journal, 2001, 81, 2251-2256.	0.5	48
59	Solid-state NMR approaches to measure topological equilibria and dynamics of membrane polypeptides. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 258-265.	2.6	48
60	Membrane interactions and alignment of structures within the HIV-1 Vpu cytoplasmic domain: effect of phosphorylation of serines 52 and 56. FEBS Letters, 2000, 482, 220-224.	2.8	46
61	Lipid-Mediated Interactions between the Antimicrobial Peptides Magainin 2 and PGLa in Bilayers. Biophysical Journal, 2018, 115, 1033-1044.	0.5	45
62	Understanding peptide interactions with the lipid bilayer: a guide to membrane protein engineering. Current Opinion in Chemical Biology, 2000, 4, 639-644.	6.1	44
63	Membrane Interaction of Chrysophsin-1, a Histidine-Rich Antimicrobial Peptide from Red Sea Bream. Biochemistry, 2007, 46, 15175-15187.	2.5	44
64	Histidineâ€rich designer peptides of the LAH4 family promote cell delivery of a multitude of cargo. Journal of Peptide Science, 2017, 23, 320-328.	1.4	44
65	Structure and Membrane Interactions of the Antibiotic Peptide Dermadistinctin K by Multidimensional Solution and Oriented 15N and 31P Solid-State NMR Spectroscopy. Biophysical Journal, 2009, 96, 2194-2203.	0.5	41
66	Membrane Interactions of Phylloseptin-1, -2, and -3 Peptides by Oriented Solid-State NMR Spectroscopy. Biophysical Journal, 2014, 107, 901-911.	0.5	40
67	Alamethicin Topology in Phospholipid Membranes by Oriented Solid-state NMR and EPR Spectroscopies: a Comparison. Journal of Physical Chemistry B, 2009, 113, 3034-3042.	2.6	39
68	Interactions Involved in the Realignment of Membrane-associated Helices. Journal of Biological Chemistry, 2006, 281, 7708-7716.	3.4	37
69	Analysis of the amide 15N chemical shift tensor of the Cα tetrasubstituted constituent of membrane-active peptaibols, the α-aminoisobutyric acid residue, compared to those of di- and tri-substituted proteinogenic amino acid residues. Journal of Biomolecular NMR, 2009, 45, 373-387.	2.8	36
70	Production and isotope labeling of antimicrobial peptides in <i>Escherichia coli</i> by means of a novel fusion partner that enables highâ€yield insoluble expression and fast purification. Journal of Peptide Science, 2009, 15, 278-284.	1.4	36
71	Membrane structure and interactions of human catestatin by multidimensional solution and solidâ€state NMR spectroscopy. FASEB Journal, 2010, 24, 1737-1746.	0.5	36
72	A Coiled-Coil Peptide Shaping Lipid Bilayers upon Fusion. Biophysical Journal, 2016, 111, 2162-2175.	0.5	36

#	Article	IF	CITATIONS
73	Membrane topologies of the PGLa antimicrobial peptide and a transmembrane anchor sequence by Dynamic Nuclear Polarization/solid-state NMR spectroscopy. Scientific Reports, 2016, 6, 20895.	3.3	36
74	Investigations of the synergistic enhancement of antimicrobial activity in mixtures of magainin 2 and PGLa. Biophysical Chemistry, 2016, 210, 35-44.	2.8	36
75	Molecular Packing of Amphipathic Peptides on the Surface of Lipid Membranes. Langmuir, 2014, 30, 10374-10383.	3.5	34
76	Vectofusin-1, a potent peptidic enhancer of viral gene transfer forms pH-dependent α-helical nanofibrils, concentrating viral particles. Acta Biomaterialia, 2017, 64, 259-268.	8.3	34
77	The Membrane Alignment of Helical Peptides from Non-oriented15N Chemical Shift Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2007, 129, 8430-8431.	13.7	32
78	Structure, dynamics and topology of membrane polypeptides by oriented 2H solid-state NMR spectroscopy. European Biophysics Journal, 2007, 36, 451-460.	2.2	31
79	Structure and Alignment of the Membrane-Associated Antimicrobial Peptide Arenicin by Oriented Solid-State NMR Spectroscopy. Biochemistry, 2011, 50, 3784-3795.	2.5	30
80	Molecular Determinants of Vectofusin-1 and Its Derivatives for the Enhancement of Lentivirally Mediated Gene Transfer into Hematopoietic Stem/Progenitor Cells. Journal of Biological Chemistry, 2016, 291, 2161-2169.	3.4	30
81	Solution and Solid-State Nuclear Magnetic Resonance Structural Investigations of the Antimicrobial Designer Peptide GL13K in Membranes. Biochemistry, 2017, 56, 4269-4278.	2.5	30
82	Solid-State NMR Investigations of Membrane-Associated Antimicrobial Peptides. Methods in Molecular Biology, 2010, 618, 209-233.	0.9	30
83	Lipid interactions of LAH4, a peptide with antimicrobial and nucleic acid transfection activities. European Biophysics Journal, 2014, 43, 499-507.	2.2	29
84	Alamethicin Supramolecular Organization in Lipid Membranes from 19F Solid-State NMR. Biophysical Journal, 2016, 111, 2450-2459.	0.5	28
85	Highly synergistic antimicrobial activity of magainin 2 and PGLa peptides is rooted in the formation of supramolecular complexes with lipids. Scientific Reports, 2020, 10, 11652.	3.3	28
86	The Alignment of a Voltage-Sensing Peptide in Dodecylphosphocholine Micelles and in Oriented Lipid Bilayers by Nuclear Magnetic Resonance and Molecular Modeling. Biophysical Journal, 1999, 77, 2102-2113.	0.5	27
87	Reversible Liposome Association Induced by LAH4: A Peptide with Potent Antimicrobial and Nucleic Acid Transfection Activities. Biophysical Journal, 2010, 98, 2544-2553.	0.5	27
88	Membrane perturbing activities and structural properties of the frog-skin derived peptide Esculentin-1a(1-21)NH2 and its Diastereomer Esc(1-21)-1c: Correlation with their antipseudomonal and cytotoxic activity. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2327-2339.	2.6	27
89	Thermodynamic and Biophysical Analysis of the Membrane-Association of a Histidine-Rich Peptide with Efficient Antimicrobial and Transfection Activities. Journal of Physical Chemistry B, 2015, 119, 9678-9687.	2.6	26
90	Structural Characterization of the Amyloid Precursor Protein Transmembrane Domain and Its Î ³ -Cleavage Site. ACS Omega, 2017, 2, 6525-6534.	3.5	26

#	Article	IF	CITATIONS
91	Dynamic Nuclear Polarization/Solidâ€State NMR Spectroscopy of Membrane Polypeptides: Freeâ€Radical Optimization for Matrixâ€Free Lipid Bilayer Samples. ChemPhysChem, 2017, 18, 2103-2113.	2.1	25
92	Revealing the Mechanisms of Synergistic Action of Two Magainin Antimicrobial Peptides. Frontiers in Medical Technology, 2020, 2, 615494.	2.5	25
93	Refinement of the Geometry of the Retinal Binding Pocket in Dark-Adapted Bacteriorhodopsin by Heteronuclear Solid-State NMR Distance Measurements. Biochemistry, 2000, 39, 10066-10071.	2.5	24
94	Translocation of amino acyl residues from the membrane interface to the hydrophobic core: thermodynamic model and experimental analysis using ATR-FTIR spectroscopy. Molecular Membrane Biology, 2006, 23, 363-374.	2.0	24
95	Probing the Huntingtin 1-17 Membrane Anchor on a Phospholipid Bilayer by Using All-Atom Simulations. Biophysical Journal, 2015, 108, 1187-1198.	0.5	24
96	Structure and membrane interactions of the homodimeric antibiotic peptide homotarsinin. Scientific Reports, 2017, 7, 40854.	3.3	24
97	Supramolecular Organization of Apolipoprotein-A-I-Derived Peptides within Disc-like Arrangements. Biophysical Journal, 2018, 115, 467-477.	0.5	23
98	The Polymorphic Nature of Membrane-Active Peptides from Biophysical and Structural Investigations. Current Protein and Peptide Science, 2012, 13, 602-610.	1.4	22
99	Solid-State NMR/Dynamic Nuclear Polarization of Polypeptides in Planar Supported Lipid Bilayers. Journal of Physical Chemistry B, 2015, 119, 14574-14583.	2.6	22
100	Solid-state NMR structural investigations of peptide-based nanodiscs and of transmembrane helices in bicellar arrangements. Chemistry and Physics of Lipids, 2019, 219, 58-71.	3.2	22
101	Solid state NMR studies of oligourea foldamers: Interaction of 15N-labelled amphiphilic helices with oriented lipid membranes. Organic and Biomolecular Chemistry, 2012, 10, 1440.	2.8	21
102	Magainin 2-PGLa Interactions in Membranes - Two Peptides that Exhibit Synergistic Enhancement of Antimicrobial Activity. Current Topics in Medicinal Chemistry, 2015, 16, 65-75.	2.1	21
103	Membrane pore-formation correlates with the hydrophilic angle of histidine-rich amphipathic peptides with multiple biological activities. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183212.	2.6	21
104	A new family of peptide–nucleic acid nanostructures with potent transfection activities. Journal of Peptide Science, 2011, 17, 88-93.	1.4	20
105	Investigation of membrane penetration depth and interactions of the amino-terminal domain of huntingtin: refined analysis by tryptophan fluorescence measurement. European Biophysics Journal, 2014, 43, 347-360.	2.2	20
106	Developing DNP/Solid-State NMR Spectroscopy of Oriented Membranes. Applied Magnetic Resonance, 2012, 43, 91-106.	1.2	19
107	Peptide-related alterations of membrane-associated water: deuterium solid-state NMR investigations of phosphatidylcholine membranes at different hydration levels. Magnetic Resonance in Chemistry, 2004, 42, 155-161.	1.9	18
108	Specific Isotope Labeling of Colicin E1 and B Channel Domains For Membrane Topological Analysis by Oriented Solidâ€State NMR Spectroscopy. ChemBioChem, 2008, 9, 944-951.	2.6	18

#	Article	IF	CITATIONS
109	Solid-State NMR Approaches to Study Protein Structure and Protein–Lipid Interactions. Methods in Molecular Biology, 2013, 974, 357-387.	0.9	18
110	Helix orientations in membrane-associated Bcl-XL determined by 15N-solid-state NMR spectroscopy. European Biophysics Journal, 2007, 37, 71-80.	2.2	17
111	Solid-State NMR Investigations of the MHC II Transmembrane Domains: Topological Equilibria and Lipid Interactions. Journal of Membrane Biology, 2019, 252, 371-384.	2.1	17
112	Membrane Association and Pore Formation by Alpha-Helical Peptides. Advances in Experimental Medicine and Biology, 2010, 677, 24-30.	1.6	16
113	Topological Equilibria of Ion Channel Peptides in Oriented Lipid Bilayers Revealed by 15N Solid-State NMR Spectroscopy. Biochemistry, 2005, 44, 12120-12127.	2.5	15
114	Proton-decoupled 15N and 31P solid-state NMR investigations of the Pf3 coat protein in oriented phospholipid bilayers. FEBS Journal, 2006, 273, 817-828.	4.7	15
115	Chemical shift powder spectra obtained by using ROtor-Directed Exchange of Orientations Cross-Polarization (RODEO-CP). Chemical Physics Letters, 2011, 508, 155-164.	2.6	15
116	On the design of supramolecular assemblies made of peptides and lipid bilayers. Journal of Peptide Science, 2014, 20, 526-536.	1.4	15
117	Peptides derived from the C-terminal domain of HIV-1 Viral Protein R in lipid bilayers: Structure, membrane positioning and gene delivery. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183149.	2.6	14
118	The Reversible Non-covalent Aggregation Into Fibers of PGLa and Magainin 2 Preserves Their Antimicrobial Activity and Synergism. Frontiers in Cellular and Infection Microbiology, 2020, 10, 526459.	3.9	13
119	Antimicrobial peptides: mechanism of action and lipid-mediated synergistic interactions within membranes. Faraday Discussions, 2021, 232, 419-434.	3.2	13
120	Side Chain Resonances in Static Oriented Proton-Decoupled ¹⁵ N Solid-State NMR Spectra of Membrane Proteins. Journal of the American Chemical Society, 2009, 131, 6340-6341.	13.7	12
121	Aryl-Alkyl-Lysines Interact with Anionic Lipid Components of Bacterial Cell Envelope Eliciting Anti-Inflammatory and Antibiofilm Properties. ACS Omega, 2018, 3, 9182-9190.	3.5	12
122	Simultaneous Analysis of Secondary Structure and Light Scattering from Circular Dichroism Titrations: Application to Vectofusin-1. Scientific Reports, 2016, 6, 39450.	3.3	11
123	Orientation and depth of surfactant protein B C-terminal helix in lung surfactant bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1165-1172.	2.6	10
124	Acyl Transfer from Membrane Lipids to Peptides Is a Generic Process. Journal of Molecular Biology, 2013, 425, 4379-4387.	4.2	10
125	Amphiphilicity Is a Key Determinant in the Membrane Interactions of Synthetic 14-mer Cationic Peptide Analogues. Biochemistry, 2016, 55, 6919-6930.	2.5	10
126	Trichogin GA IV Alignment and Oligomerization in Phospholipid Bilayers. ChemBioChem, 2019, 20, 2141-2150.	2.6	10

8

#	Article	IF	CITATIONS
127	Hydramacin-1 in Action: Scrutinizing the Barnacle Model. Antimicrobial Agents and Chemotherapy, 2013, 57, 2955-2966.	3.2	9
128	The histidine-rich peptide LAH4-L1 strongly promotes PAMAM-mediated transfection at low nitrogen to phosphorus ratios in the presence of serum. Scientific Reports, 2017, 7, 9585.	3.3	9
129	Investigations of the Structure, Topology, and Interactions of the Transmembrane Domain of the Lipid-Sorting Protein p24 Being Highly Selective for Sphingomyelin-C18. Biochemistry, 2019, 58, 2782-2795.	2.5	9
130	Structure, interactions and membrane topology of HIV gp41 ectodomain sequences. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183274.	2.6	9
131	Domains stack up. Nature Materials, 2012, 11, 1005-1006.	27.5	7
132	Dynamic Nuclear Polarization / solid-state NMR of membranes. Thermal effects and sample geometry. Solid State Nuclear Magnetic Resonance, 2019, 100, 70-76.	2.3	7
133	Tyrocidine A interactions with saccharides investigated by CD and NMR spectroscopies. Journal of Peptide Science, 2019, 25, e3163.	1.4	7
134	Structure, Topology, and Dynamics of Membrane-Inserted Polypeptides and Lipids by Solid-State NMR Spectroscopy: Investigations of the Transmembrane Domains of the DQ Beta-1 Subunit of the MHC II Receptor and of the COP I Protein p24. Frontiers in Molecular Biosciences, 2019, 6, 83.	3.5	7
135	Copper-binding motifs Xxx-His or Xxx-Zzz-His (ATCUN) linked to an antimicrobial peptide: Cu-binding, antimicrobial activity and ROS production. Journal of Inorganic Biochemistry, 2020, 213, 111255.	3.5	7
136	Lipid saturation and head group composition have a pronounced influence on the membrane insertion equilibrium of amphipathic helical polypeptides. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183844.	2.6	7
137	Characterization of the DNA and Membrane Interactions of a Bioreducible Cell-Penetrating Foldamer in its Monomeric and Dimeric Form. Journal of Physical Chemistry B, 2020, 124, 4476-4486.	2.6	6
138	Different Biological Activities of Histidine-Rich Peptides Are Favored by Variations in Their Design. Toxins, 2021, 13, 363.	3.4	6
139	CHAPTER 12. Investigations of the Structure, Topology and Dynamics of Membrane-Associated Polypeptides by Solid-State NMR Spectroscopy. New Developments in NMR, 2014, , 214-234.	0.1	6
140	Solution Synthesis, Conformational Analysis, and Antimicrobial Activity of Three Alamethicin F50/5 Analogs Bearing a Trifluoroacetyl Label. Chemistry and Biodiversity, 2014, 11, 1163-1191.	2.1	5
141	Solid-State NMR Approaches to Study Protein Structure and Protein–Lipid Interactions. Methods in Molecular Biology, 2019, 2003, 563-598.	0.9	5
142	Histidine-Rich Cationic Cell-Penetrating Peptides for Plasmid DNA and siRNA Delivery. Methods in Molecular Biology, 2019, 1943, 39-59.	0.9	5
143	Investigation of the Action of Peptides on Lipid Membranes. Journal of Physical Chemistry B, 2021, 125, 10213-10223.	2.6	4
144	Structure, membrane topology and influence of cholesterol of the membrane proximal region: transmembrane helical anchor sequence of gp41 from HIV. Scientific Reports, 2020, 10, 22278.	3.3	4

#	Article	IF	CITATIONS
145	Effect of lipid saturation on the topology and oligomeric state of helical membrane polypeptides. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 184001.	2.6	4
146	Epimers l- and d-Phenylseptin: How the relative stereochemistry affects the peptide-membrane interactions. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183708.	2.6	3
147	Membrane Interactions Accelerate the Self-Aggregation of Huntingtin Exon 1 Fragments in a Polyglutamine Length-Dependent Manner. International Journal of Molecular Sciences, 2021, 22, 6725.	4.1	2
148	Peptide-nucleic acid nanostructures for transfection. Biomolecular Concepts, 2012, 3, 283-293.	2.2	1
149	Lipid bilayer position and orientation of novel carprofens, modulators of γ-secretase in Alzheimer's disease. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2224-2233.	2.6	1
150	Solid–State NMR Investigations of the MHC II Transmembrane Domains: Topological Equilibria and Lipid Interactions. Biophysical Journal, 2020, 118, 391a-392a.	0.5	1
151	Membrane interactions of Ocellatins. Where do antimicrobial gaps stem from?. Amino Acids, 2021, 53, 1241-1256.	2.7	1
152	Supported Lipid Bilayers. , 2019, , 1-8.		0
153	Where the heart beats. Structure, 2022, 30, 326-328.	3.3	Ο